The Cytotoxic Effects of Fine Particulate Matter (PM) from Different Sources at the Air-Liquid Interface Exposure on A549 Cells.

Toxics

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Published: December 2023

The health of humans has been negatively impacted by PM exposure, but the chemical composition and toxicity of PM might vary depending on its source. To investigate the toxic effects of particulate matter from different sources on lung epithelial cells (A549), PM samples were collected from residential, industrial, and transportation areas in Nanjing, China. The chemical composition of PM was analyzed, and toxicological experiments were conducted. The A549 cells were exposed using an air-liquid interface (ALI) exposure system, and the cytotoxic indicators of the cells were detected. The research results indicated that acute exposure to different sources of particulate matter at the air-liquid interface caused damage to the cells, induced the production of ROS, caused apoptosis, inflammatory damage, and DNA damage, with a dose-effect relationship. The content of heavy metals and PAHs in PM from the traffic source was relatively high, and the toxic effect of the traffic-source samples on the cells was higher than that of the industrial- and residential-source samples. The cytotoxicity of particulate matter was mostly associated with water-soluble ions, carbon components, heavy metals, PAHs, and endotoxin, based on the analysis of the Pearson correlation. Oxidative stress played an important role in PM-induced biological toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10821317PMC
http://dx.doi.org/10.3390/toxics12010021DOI Listing

Publication Analysis

Top Keywords

particulate matter
16
air-liquid interface
12
matter sources
8
a549 cells
8
chemical composition
8
heavy metals
8
metals pahs
8
cells
6
cytotoxic effects
4
effects fine
4

Similar Publications

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Relationship of modifiable risk factors with the incidence of thyroid cancer: a worldwide study.

BMC Res Notes

January 2025

Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.

Background: Thyroid cancer is one of the most common cancers of the endocrine system. The incidence of this cancer has increased in many countries. Many cases of thyroid cancer do not have any symptoms.

View Article and Find Full Text PDF

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!