Winter ulcer disease is a health issue in the Atlantic salmonid aquaculture industry, mainly caused by . Although vaccination is one of the effective ways to prevent bacterial outbreaks in the salmon farming industry, ulcer disease related to bacterial infections is being reported on Canada's Atlantic coast. Here, we studied the immune response of farmed immunized Atlantic salmon to bath and intraperitoneal (ip) challenges and evaluated the immunogenicity of cell components. IgM titers were determined after infection, post boost immunization, and post challenge with . IgM (B cell) in the spleen and blood cell populations were also identified and quantified by 3,3 dihexyloxacarbocyanine (DiOC6) and IgM-Texas red using confocal microscopy and flow cytometry. At 14 days post challenge, IgM was detected in the serum and spleen. There was a significant increase in circulating neutrophils 3 days after ip and bath challenges in the outer membrane vesicles (OMVs) boosted group compared to non-boosted. Lymphocytes increased in the blood at 7 and 14 days after the ip and bath challenges, respectively, in OMVs boosted group. Furthermore, a rise in IgM titers was detected in the OMVs boosted group. We determined that a commercial vaccine is effective against strain, and OMVs are the most immunogenic component of cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10818610 | PMC |
http://dx.doi.org/10.3390/vaccines12010070 | DOI Listing |
Front Immunol
December 2024
Laboratorio VacSal, Instituto de Biotecnología y Biología Molecular (IBBM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina.
Introduction: We previously identified -derived outer membrane vesicles (OMVs) as a promising immunogen for improving pertussis vaccines. In this study, we evaluated the efficacy of our vaccine prototype in immunization strategies aimed at reducing disease transmission by targeting colonization in the upper airways while maintaining protection against severe disease by reducing colonization in the lower respiratory tract.
Methods: We assessed different mucosal administration strategies in a murine model, including homologous mucosal 2-dose prime-boost schedules and heterologous prime-boost strategies combining intramuscular (IM) systemic immunization with mucosal routes (intranasal, IN; or sublingual, SL).
Nanoscale
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Bacterial outer membrane vesicles (OMVs), produced by Gram-negative bacteria, retain the immunostimulatory capacity of parental bacteria. OMVs have been recognized as potent natural immune adjuvants and drug delivery vehicles. Photothermal therapy that triggers immunogenic cell death further stimulates the immune system by releasing damage-associated molecular patterns.
View Article and Find Full Text PDFBiomed Eng Comput Biol
August 2024
Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia.
Aim: The Insilco study uses deep learning algorithms to predict the protein-coding pg m RNA sequences.
Material And Methods: The NCBI GEO DATA SET GSE218606's GEO R tool discovered P.G's outer membrane vesicles' most differentially expressed mRNA.
() causes Bacterial Cold Water Disease in salmonids. During host-pathogen interactions, gram-negative bacteria, such as , release external membrane vesicles (OMVs) harbouring cargos, such as DNA, RNA and virulence factors. This study aimed to characterise the potential role of the OMVs' small RNAs (sRNAs) in the -rainbow trout host-pathogen interactions.
View Article and Find Full Text PDFSmall
October 2024
Department of Digestive Surgery, State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
Increased expression of immune check point genes, such as PD-L1, is one of the main reasons for immunosuppression, especially for colon cancer. Development of novel therapeutic strategies is of great importance to improve the prognosis. In this study, outer membrane vesicles (OMV) derived from Gram-negative bacteria are engineered to immune checkpoint blockade nanosystem for efficient elicitation of anti-tumor immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!