Microplastics, especially aged microplastics can become vectors of metals from environment to organisms with potential negative effects on food chain. However, a few studies focused on the bioavailability of adsorbed metals and most studies related to aged microplastics used artificial method that cannot entirely reflect actual aging processes. In this study, virgin polystyrene was aged by ozone (PS-O), solar simulator (PS-SS) and lake (PS-lake) to investigate adsorption of Cu by virgin, artificially and naturally aged microplastics and subsequent release in simulated gastrointestinal fluids (SGF). Characterization results show carbonyl was formed in PS-O and PS-SS, and the oxidation degree was PS-O > PS-SS > PS-lake. However, Cu adsorption capacity followed this order PS-lake (158 μg g) > PS-SS (117 μg g) > PS-O (65 μg g) > PS-virgin (0). PS-O showed highest Cu adsorption capacity at 0.5 h (71 μg g), but it dropped dramatically later (10 μg g, 120 h), because PS-O could break up and the adsorbed Cu released in solutions subsequently. For PS-lake, precipitation of metallic oxides contributes to the accumulation of Cu. The addition of dissolved organic matter (DOM) could occupy adsorption sites on PS and compete with Cu, but also can attach PS and adsorb Cu due to its rich functional groups. The simultaneous ingestion of microplastics with food suggested that adsorbed Cu is solubilized mostly from aged PS to SGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3em00354j | DOI Listing |
J Hazard Mater
January 2025
State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Large-scale plastic wastes annually inevitably induce co-pollution of microplastics (MPs) and novel brominated flame retardants (NBFRs), while gaps remain concerning their effect on terrestrial function. We investigated the impact of polylactic acid (PLA) or polyethylene (PE) MPs after aging in soil-earthworm microcosms under decabromodiphenyl ethane (DBDPE) contamination. MPs altered the food (i.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Polylactic acid (PLA) is a biodegradable alternative to traditional plastics due to its excellent biocompatibility. However, PLA is challenging to fully degrade and can easily become microplastics (MPs) in surface water, a process accompanied by aging. This study found that aged PLA (APLA) MPs exhibited increased surface roughness, decreased surface potential, and more oxygen-containing functional groups compared to PLA.
View Article and Find Full Text PDFAnal Bioanal Chem
January 2025
European Commission, Joint Research Centre (JRC), Geel, Belgium.
When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.
View Article and Find Full Text PDFAquat Toxicol
January 2025
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China. Electronic address:
The hepatotoxicity of microplastics (MPs) has garnered increasing attention, but their effects on elderly organisms remain inadequately characterized, particularly concerning hepatic stress response patterns in environmental conditions. In this study, a 10-day exposure period of elderly zebrafish to polystyrene microplastics (PS-MPs, 1 µm) was conducted, with exposure concentrations set at 5.6 × 10 µg/L, 5.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!