Background: Pepper ( L.) is a valuable horticultural crop with economic significance, and its purple fruit color is attributed to anthocyanin, a phytonutrient known for its health-promoting benefits. However, the mechanisms regulating anthocyanin biosynthesis in pepper have yet to be fully elucidated.

Methods: RNA sequencing (RNA-seq) was utilized to analyze the transcriptome of fruits from three purple-fruited varieties (HN191, HN192, and HN005) and one green-fruited variety (EJT) at various developmental stages. To determine the relationships between samples, Pearson correlation coefficients (PCC) and principal component analysis (PCA) were calculated. Differential expression analysis was performed using the DESeq2 package to identify genes that were expressed differently between two samples. Transcription factors (TF) were predicted using the iTAK program. Heatmaps of selected genes were generated using Tbtools software.

Results: The unripe fruits of HN191, HN192, and HN005, at the stages of 10, 20, and 30 days after anthesis (DAA), display a purple color, whereas the unripe fruits of variety EJT remain green. To understand the molecular basis of this color difference, five transcriptome comparisons between green and purple fruits were conducted: HN191-10 EJT-10, HN191-20 EJT-20, HN191-30 EJT-30, HN192-30 EJT-30, and HN005-30 EJT-30. Through this analysis, 503 common differentially expressed genes (DEGs) were identified. Among these DEGs, eight structural genes related to the anthocyanin biosynthesis pathway and 24 transcription factors (TFs) were detected. Notably, one structural gene (MSTRG.12525) and three TFs (T459_25295, T459_06113, T459_26036) exhibited expression patterns that suggest they may be novel candidate genes involved in anthocyanin biosynthesis. These results provide new insights into the regulation of anthocyanin biosynthesis in purple pepper fruit and suggest potential candidate genes for future genetic improvement of pepper germplasm with enhanced anthocyanin accumulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799612PMC
http://dx.doi.org/10.7717/peerj.16792DOI Listing

Publication Analysis

Top Keywords

anthocyanin biosynthesis
20
green purple
8
genes anthocyanin
8
hn191 hn192
8
hn192 hn005
8
variety ejt
8
transcription factors
8
unripe fruits
8
candidate genes
8
genes
7

Similar Publications

The phenylacetone pathway, which encompasses flavonoids, lignin, and other compounds, is of paramount importance in determining the quality of pear fruit. Nevertheless, the precise regulatory functions of R2R3-MYB transcription factors in the metabolic pathways that regulate pear color changes remain unclear. In this study, we isolated an transcription factor from 'Red Zaosu' pears and demonstrated that it influenced the expression of several genes, including , and .

View Article and Find Full Text PDF

Strawberry anthocyanin pelargonidin-3-glucoside attenuated OA-induced neurotoxicity by activating UPR.

Food Funct

January 2025

Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.

In this study, network pharmacology analysis revealed that strawberry anthocyanins mainly interfered with lipid metabolism and nerve-related signaling pathways. Pelargonidin-3-glucoside (Pg3G), one of the main anthocyanins in strawberry, was screened as the most effective anthocyanin for attenuating excess lipid accumulation. Moreover, Pg3G decreased lipid levels, relieved oxidative stress, and restored abnormal behavioral activities in under oleic acid (OA) exposure.

View Article and Find Full Text PDF

The aim of this study was to examine the drying kinetics of L. fruits at various maturation stages (I to V) using a range of mathematical models (Henderson and Pabis, Lewis, Logarithmic, Midilli, and Page). Additionally, an assessment of the resulting flours' quality was conducted.

View Article and Find Full Text PDF

The genetic basis of type 1 red-flesh color development in apple () depends upon a particular allele of the gene. Interestingly, type 1 red-flesh apples are fully red after fruit set, but anthocyanin pigmentation in apple fruit cortex may decrease during fruit growth and maturation, leading to variable red patterning and intensities in the mature cortical flesh. We developed a histogram-based color analysis method to quantitatively estimate pigmentation patterns.

View Article and Find Full Text PDF

Effect of anthocyanin rich black sugarcane on milk production and antioxidant capacity in lactating dairy cows.

Sci Rep

January 2025

School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.

This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!