The activation Gq protein-coupled receptors (GPCRs) is a crucial factor contributing to maladaptive cardiac hypertrophy, and dysregulation of autophagy is implicated in its prohypertrophic effects. Previous studies have shown that diacylglycerol kinase zeta (DGKζ) can suppress cardiac hypertrophy by inhibiting the diacylglycerol (DAG)-PKC pathway in response to mechanical strain or growth agonists such as endothelin-1 (ET-1). However, the involvement of DGKζ in autophagy regulation remains poorly understood. In this study, we aimed to investigate the role of DGKζ in autophagy regulation during maladaptive cardiac hypertrophy. We found that Beclin1-mediated autophagy was involved in the development of maladaptive cardiac hypertrophy and dysfunction in response to prohypertrophic challenges of transverse aortic constriction (TAC) or ET-1. Deficiency of DGKζ promoted Beclin1-mediated autophagy, aggravated adverse cardiac remodeling, and cardiac dysfunction, which could be ameliorated by genetic deletion of Beclin1 or TFEB. Mechanistically, the deficiency of DGKζ disrupted the activation of AKT/mTOR signaling, the association between mTOR and TFEB, and favored the nuclear translocation of TFEB from the cytoplasm, leading to enhanced activation of Beclin1-mediated autophagy through ULK1/Beclin1 signaling and TFEB-dependent Beclin1 transcription. Taken together, these results suggest that the mechanisms by which DGKζ alleviates pathological cardiac hypertrophy may involve the regulation of Beclin1-mediated autophagy through the mTOR/TFEB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797681 | PMC |
http://dx.doi.org/10.7150/ijms.88134 | DOI Listing |
J Transl Med
January 2025
Aerospace Medical Center, Aerospace Center Hospital, Beijing, China.
Heart-on-a-chip (HoC) devices have emerged as a powerful tool for studying the human heart's intricate functions and dysfunctions in vitro. Traditional preclinical models, such as 2D cell cultures model and animal model, have limitations in accurately predicting human response to cardiovascular diseases and treatments. The HoC approach addresses these shortcomings by recapitulating the microscale anatomy, physiology, and biomechanics of the heart, thereby providing a more clinically relevant platform for drug testing, disease modeling, and personalized therapy.
View Article and Find Full Text PDFGeroscience
January 2025
Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
Research in aging often refers to animal models, particularly C57BL/6J (B6J) mice, considered gold standard. However, B6J mice are distributed by different suppliers, which results in divers substrains exhibiting notable phenotypic differences. To ensure a suitable phenotype of cardiac aging, we performed heart analyses of young (5 months) and old B6J mice (24 months) from two substrains: B6JRj (Janvier) and B6JCrl mice (Charles River).
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
From the Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC.
The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.
View Article and Find Full Text PDFBiomed Rep
March 2025
Physiology Molecular, Biological Activity Division, Central Laboratory, Sumedang, West Java 45363, Indonesia.
Aging is known to cause increased comorbidities associated with cardiovascular decline. Physical exercises were known to be an effective intervention for the age-associated decline in cardiac function. Exercise caused physiological hypertrophy influenced by Yap/Taz, autophagy and myosin heavy chain (MHC) dynamics.
View Article and Find Full Text PDFFront Cardiovasc Med
January 2025
Department of Cardiology, Vayodha Hospitals, Kathmandu, Nepal.
Introduction: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder. It is characterized by left ventricular hypertrophy and impaired cardiac function, with forms categorized into obstructive (oHCM) and nonobstructive (nHCM). Traditional treatments address symptoms but not the underlying disease mechanism, highlighting the need for novel therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!