A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Impact of Measurement Model Misspecification on Coefficient Omega Estimates of Composite Reliability. | LitMetric

Coefficient omega indices are model-based composite reliability estimates that have become increasingly popular. A coefficient omega index estimates how reliably an observed composite score measures a target construct as represented by a factor in a factor-analysis model; as such, the accuracy of omega estimates is likely to depend on correct model specification. The current paper presents a simulation study to investigate the performance of omega-unidimensional (based on the parameters of a one-factor model) and omega-hierarchical (based on a bifactor model) under correct and incorrect model misspecification for high and low reliability composites and different scale lengths. Our results show that coefficient omega estimates are unbiased when calculated from the parameter estimates of a properly specified model. However, omega-unidimensional produced positively biased estimates when the population model was characterized by unmodeled error correlations or multidimensionality, whereas omega-hierarchical was only slightly biased when the population model was either a one-factor model with correlated errors or a higher-order model. These biases were higher when population reliability was lower and increased with scale length. Researchers should carefully evaluate the feasibility of a one-factor model before estimating and reporting omega-unidimensional.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795570PMC
http://dx.doi.org/10.1177/00131644231155804DOI Listing

Publication Analysis

Top Keywords

coefficient omega
16
omega estimates
16
model
12
one-factor model
12
model misspecification
8
composite reliability
8
population model
8
estimates
7
omega
5
impact measurement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!