Knowledge of medicinal plant species is necessary to preserve medicinal plants and safeguard biodiversity. The classification and identification of these plants by botanist experts are complex and time-consuming activities. This systematic review's main objective is to systematically assess the prior research efforts on the applications and usage of deep learning approaches in classifying and recognizing medicinal plant species. Our objective was to pinpoint systematic reviews following the PRISMA guidelines related to the classification and recognition of medicinal plant species through the utilization of deep learning techniques. This review encompassed studies published between January 2018 and December 2022. Initially, we identified 1644 studies through title, keyword, and abstract screening. After applying our eligibility criteria, we selected 31 studies for a thorough and critical review. The main findings of this reviews are (1) the selected studies were carried out in 16 different countries, and India leads in paper contributions with 29%, followed by Indonesia and Sri Lanka. (2) A private dataset has been used in 67.7% of the studies subjected to image augmentation and preprocessing techniques. (3) In 96.7% of the studies, researchers have employed plant leaf organs, with 74% of them utilizing leaf shapes for the classification and recognition of medicinal plant species. (4) Transfer learning with the pre-trained model was used in 83.8% of the studies as a future extraction technique. (5) Convolutional Neural Network (CNN) is used by 64.5% of the paper as a deep learning classifier. (6) The lack of a globally available and public dataset need for medicinal plants indigenous to a specific country and the trustworthiness of the deep learning approach for the classification and recognition of medicinal plants is an observable research gap in this literature review. Therefore, further investigations and collaboration between different stakeholders are required to fulfilling the aforementioned research gaps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796487 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1286088 | DOI Listing |
Int J Med Inform
January 2025
Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:
Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.
View Article and Find Full Text PDFRadiol Med
January 2025
Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.
Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.
NPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China.
Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!