Deep learning for medicinal plant species classification and recognition: a systematic review.

Front Plant Sci

Department of Computer Science and Engineering, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama, Ethiopia.

Published: January 2024

Knowledge of medicinal plant species is necessary to preserve medicinal plants and safeguard biodiversity. The classification and identification of these plants by botanist experts are complex and time-consuming activities. This systematic review's main objective is to systematically assess the prior research efforts on the applications and usage of deep learning approaches in classifying and recognizing medicinal plant species. Our objective was to pinpoint systematic reviews following the PRISMA guidelines related to the classification and recognition of medicinal plant species through the utilization of deep learning techniques. This review encompassed studies published between January 2018 and December 2022. Initially, we identified 1644 studies through title, keyword, and abstract screening. After applying our eligibility criteria, we selected 31 studies for a thorough and critical review. The main findings of this reviews are (1) the selected studies were carried out in 16 different countries, and India leads in paper contributions with 29%, followed by Indonesia and Sri Lanka. (2) A private dataset has been used in 67.7% of the studies subjected to image augmentation and preprocessing techniques. (3) In 96.7% of the studies, researchers have employed plant leaf organs, with 74% of them utilizing leaf shapes for the classification and recognition of medicinal plant species. (4) Transfer learning with the pre-trained model was used in 83.8% of the studies as a future extraction technique. (5) Convolutional Neural Network (CNN) is used by 64.5% of the paper as a deep learning classifier. (6) The lack of a globally available and public dataset need for medicinal plants indigenous to a specific country and the trustworthiness of the deep learning approach for the classification and recognition of medicinal plants is an observable research gap in this literature review. Therefore, further investigations and collaboration between different stakeholders are required to fulfilling the aforementioned research gaps.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796487PMC
http://dx.doi.org/10.3389/fpls.2023.1286088DOI Listing

Publication Analysis

Top Keywords

deep learning
20
medicinal plant
20
plant species
20
classification recognition
16
medicinal plants
12
recognition medicinal
12
medicinal
8
selected studies
8
studies
7
plant
6

Similar Publications

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.

View Article and Find Full Text PDF

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!