Graphene as a Sensor for Lung Cancer: Insights into Adsorption of VOCs Using vdW DFT.

ACS Omega

Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: January 2024

The adsorption mechanism of individual volatile organic compounds (VOCs) on the surface of graphene is investigated using nonempirical van der Waals (vdW) density functional theory. The VOCs chosen as adsorbates are ethanol, benzene, and toluene, which are found in the exhaled breath of lung cancer patients. The most energetically favorable configurations of the adsorbed systems, adsorption energy profiles, charge transfer, and work function are calculated. The fundamental insight into the interactions between the considered VOC molecules and graphene through molecular doping, i.e., charge transfer, is estimated. It is found that the adsorption energy is highly sensitive to the vdW functionals. Adsorption energies calculated by revPBE-vdW are in good agreement with the available experimental data, and the revPBE-vdW functional can cover well the physical phenomena behind the adsorption of these VOCs on graphene. Bader charge analysis shows that 0.064, 0.042, and 0.061e of charge were transferred from the graphene surface to ethanol, benzene, and toluene, respectively. All of the considered VOCs act as electron acceptors from graphene. By analyzing the electronic structure of the adsorption systems, we found that the energy level of the highest occupied molecular orbitals of these considered VOCs is shifted backward toward the Fermi level. The interaction of the VOCs with the π and π* states of the C atoms in graphene breaks the symmetry of graphene, leading to the opening of a band gap at the Fermi level. The adsorption of these considered VOCs onto the pristine graphene produces a band gap of 5-12 meV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10795125PMC
http://dx.doi.org/10.1021/acsomega.3c06159DOI Listing

Publication Analysis

Top Keywords

considered vocs
12
graphene
9
lung cancer
8
adsorption
8
vocs
8
adsorption vocs
8
ethanol benzene
8
benzene toluene
8
adsorption energy
8
charge transfer
8

Similar Publications

Study on exhaled volatile organic compounds identifying cognitive fatigue induced by N-back task in healthy young adults.

Ecotoxicol Environ Saf

January 2025

National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; China CDC Key Laboratory of Environment and Population Health, Beijing 100021, China. Electronic address:

Cognitive fatigue in specific occupations may present a risk to personal safety. The study aimed to explore the characteristic volatile organic compounds (VOCs) in exhaled breath in response to cognitive fatigue, to provide a scientific basis for the non-invasive exhaled breath diagnostic techniques for cognitive fatigue assessing. Thirty healthy young adults were recruited and assigned to complete two 1.

View Article and Find Full Text PDF

Background And Aims: The currently recognized diversity of pollination strategies requires pollination syndromes to be updated. Described a decade ago, kleptomyiophily is a deceptive pollination system in which plants exploit the nutrient-seeking behavior of females of kleptoparasitic flies (Chloropidae and Milichiidae) by olfactorily mimicking their insect host. Such a pollination system was already hypothesized for pollination by biting midges (Ceratopogonidae) but has never been formalized.

View Article and Find Full Text PDF

Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties.

Food Chem X

January 2025

Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture and Rural Affairs, China National Rice Research Institute, Hangzhou 310006, China.

The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups.

View Article and Find Full Text PDF

Necrotizing enterocolitis (NEC) is a devastating disease of the neonatal gastrointestinal tract. Volatile organic compounds (VOCs), odoriferous compounds released as a byproduct of bacterial metabolism, can be used as a proxy for gut health. We hypothesized that patients with NEC would have different microbial profiles and elicit different VOC signatures as assessed by gas chromatography/mass spectrometry (GC/MS) or an electronic nose compared to controls.

View Article and Find Full Text PDF

Novel Perspectives for Sensory Analysis Applied to Piperaceae and Aromatic Herbs: A Pilot Study.

Foods

January 2025

Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.

Spices and aromatic herbs are important components of everyday nutrition in several countries and cultures, thanks to their capability to enhance the flavor of many dishes and convey significant emotional contributions by themselves. Indeed, spices as well as aromatic herbs are to be considered not only for their important values of antimicrobial agents or flavor enhancers everybody knows, but also, thanks to their olfactory and gustatory spectrum, as drivers to stimulate the consumers' memories and, in a stronger way, emotions. Considering these unique characteristics, spices and aromatic herbs have caught the attention of consumer scientists and experts in sensory analysis for their evaluation using semi-quantitative approaches, with interesting evidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!