Causal effect of beta-blockers on the risk of lung cancer: a Mendelian randomization study.

J Thorac Dis

Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China.

Published: December 2023

Background: It remains uncertain whether there is a causal association of the use of beta-blockers (BBs) on lung cancer risk. We used a two-sample Mendelian randomization (MR) approach to identify the causal association of BBs and lung cancer risk.

Methods: Twenty-two BB-related single-nucleotide polymorphisms (SNPs) were obtained from the UK Biobank as the instrumental variables (IVs). Genetic summary data information of lung cancer was extracted from the International Lung Cancer Consortium, with a total of 11,348 cases and 15,861 controls. We adopted the inverse-variance weighted (IVW) approach to conduct the MR analyses. Egger-intercept analysis was further performed as sensitivity analysis for pleiotropy evaluation. Additionally, we investigated whether BBs could causally affect the risk of lung cancer through their pharmacological effects.

Results: The current IVW analysis suggested a decreased lung cancer risk in BB users [odds ratio (OR) =0.83; 95% confidence interval (CI): 0.73-0.95; P<0.01]. Results of Egger-intercept analysis demonstrated that no pleiotropy was found (P=0.94), which suggested the robustness of the causality. However, there was little evidence that pharmacological effects mediate the association between BBs and lung cancer.

Conclusions: The current analysis suggested that BBs could decrease the risk of lung cancer but may be not via its pharmacological effects. Further research is in need for elucidating the underlying mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797374PMC
http://dx.doi.org/10.21037/jtd-23-1098DOI Listing

Publication Analysis

Top Keywords

lung cancer
28
risk lung
8
mendelian randomization
8
causal association
8
bbs lung
8
cancer risk
8
lung
7
cancer
7
causal beta-blockers
4
risk
4

Similar Publications

Background: Interstitial lung abnormalities (ILA) are a proposed imaging concept. Fibrous ILA have a higher risk of progression and death. Clinically, computed tomography (CT) examination is a frequently used and convenient method compared with pulmonary function tests.

View Article and Find Full Text PDF

Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!