Kaolinite can undergo a controlled morphological modification process into exfoliated nanosilicate sheets (EXK) and silicate nanotubes (KNTs). The modified structures were assessed as potential effective adsorbents for the retention of Cs ions. The impact of the modification process on the retention properties was assessed based on conventional and advanced equilibrium studies, considering the related steric and energetic functions. The synthetic KNTs exhibit a retention capacity of 249.7 mg g as compared to EXK (199.8 mg g), which is significantly higher than raw kaolinite (73.8 mg g). The kinetic modeling demonstrates the high effectiveness of the pseudo-first-order kinetic model ( > 0.9) to illustrate the sequestration reactions of Cs ions by K, EXK, and KNTs. The enhancement effect of the modification processes can be illustrated based on the statistical investigations. The presence of active and vacant receptors enhanced greatly from 19.4 mg g for KA to 40.8 mg g for EXK and 46.9 mg g for KNTs at 298 K. This validates the significant impact of the modification procedures on the specific surface area, reaction interface, and reacting chemical groups' exposure. This also appeared in the enhancement of the reactivity of their surfaces to be able to uptake 10 Cs ions by KNTs and 5 ions by EXK as compared to 4 ions by kaolinite. The thermodynamic and energetic parameters (Gaussian energy < 8.6 kJ mol; uptake energy < 40 kJ mol) show that the physical processes are dominant, which have spontaneous and exothermic properties. The synthetic EXK and KNT structures validate the high elimination performance of the retention of Cs either in the existence of additional anions or cations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797332PMC
http://dx.doi.org/10.1039/d3ra08490fDOI Listing

Publication Analysis

Top Keywords

modification process
8
impact modification
8
ions exk
8
energy mol
8
ions
6
exk
6
knts
5
effective retention
4
retention cesium
4
cesium ions
4

Similar Publications

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

The exposome is the measure of all the exposures of an individual in a lifetime and how those exposures relate to health. Exposomics is the emerging field of research to measure and study the totality of the exposome. Exposomics can assist with molecular medicine by furthering our understanding of how the exposome influences cellular and molecular processes such as gene expression, epigenetic modifications, metabolic pathways, and immune responses.

View Article and Find Full Text PDF

Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer's disease.

Cell Death Differ

January 2025

Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.

View Article and Find Full Text PDF

Social cognition, which ranges from recognizing social cues to intricate inferential reasoning, is influenced by environmental factors and epigenetic mechanisms. Notably, methylation variations in stress-related genes like brain-derived neurotrophic factor (BDNF) and the oxytocin receptor (OXTR) are linked to distinct social cognitive functions and exhibit sex-specific differences. This study investigates how these methylation differences affect social cognition across sexes, focusing on both perceptual and inferential cognitive levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!