A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Emerging perspectives of synaptic biomarkers in ALS and FTD. | LitMetric

Emerging perspectives of synaptic biomarkers in ALS and FTD.

Front Mol Neurosci

Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, United States.

Published: January 2024

Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are debilitating neurodegenerative diseases with shared pathological features like transactive response DNA-binding protein of 43 kDa (TDP-43) inclusions and genetic mutations. Both diseases involve synaptic dysfunction, contributing to their clinical features. Synaptic biomarkers, representing proteins associated with synaptic function or structure, offer insights into disease mechanisms, progression, and treatment responses. These biomarkers can detect disease early, track its progression, and evaluate therapeutic efficacy. ALS is characterized by elevated neurofilament light chain (NfL) levels in cerebrospinal fluid (CSF) and blood, correlating with disease progression. TDP-43 is another key ALS biomarker, its mislocalization linked to synaptic dysfunction. In FTD, TDP-43 and tau proteins are studied as biomarkers. Synaptic biomarkers like neuronal pentraxins (NPs), including neuronal pentraxin 2 (NPTX2), and neuronal pentraxin receptor (NPTXR), offer insights into FTD pathology and cognitive decline. Advanced technologies, like machine learning (ML) and artificial intelligence (AI), aid biomarker discovery and drug development. Challenges in this research include technological limitations in detection, variability across patients, and translating findings from animal models. ML/AI can accelerate discovery by analyzing complex data and predicting disease outcomes. Synaptic biomarkers offer early disease detection, personalized treatment strategies, and insights into disease mechanisms. While challenges persist, technological advancements and interdisciplinary efforts promise to revolutionize the understanding and management of ALS and FTD. This review will explore the present comprehension of synaptic biomarkers in ALS and FTD and discuss their significance and emphasize the prospects and obstacles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796791PMC
http://dx.doi.org/10.3389/fnmol.2023.1279999DOI Listing

Publication Analysis

Top Keywords

synaptic biomarkers
20
als ftd
12
synaptic
8
biomarkers als
8
synaptic dysfunction
8
offer insights
8
insights disease
8
disease mechanisms
8
neuronal pentraxin
8
biomarkers
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!