Therapists and strength and conditioning specialists use self-myofascial release (SMR) as an intervention tool through foam rollers or massage rollers for soft tissue massage, with the purpose of improving mobility in the muscular fascia. Moreover, the use of SMR by professional and amateur athletes during warm-ups, cool downs, and workouts can have significant effects on their physical performance attributes, such as range of motion (ROM) and strength. The purpose of this study was to analyse the literature pertaining to these types of interventions and their effects found in different physical performance attributes for athletes. A systematic search was carried out using the following databases: PUBMED, ISI Web of Science, ScienceDirect, and Cochrane, including articles up to September 2023. A total of 25 articles with 517 athletes were studied in depth. SMR seems to have acute positive effects on flexibility and range of motion, without affecting muscle performance during maximal strength and power actions, but favouring recovery perception and decreasing delayed-onset muscle soreness. Some positive effects on agility and very short-range high-speed actions were identified, as well. In conclusion, although there is little evidence of its method of application due to the heterogeneity in that regard, according to our findings, SMR could be used as an intervention to improve athletes' perceptual recovery parameters, in addition to flexibility and range of motion, without negatively affecting muscle performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801590 | PMC |
http://dx.doi.org/10.3390/jfmk9010020 | DOI Listing |
ACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, Ohio, USA.
The wheelchair service delivery process (SDP) is a large complex system and therefore has many potential points of failure; determining priorities for improvement is challenging. The complexities introduce several barriers to accessing and maintaining wheelchairs for individuals with mobility impairments. Given the breadth and depth of the barriers, it is important to know in which areas to focus future policy reform efforts.
View Article and Find Full Text PDFJ Dance Med Sci
January 2025
School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston, UK.
There is currently little research relating specifically to the muscular strength and endurance requirements of the upper body such as lifts at varying heights, ground floor contact with the hands and inversions such as handstands. Enhanced understanding of muscular demands can inform training program design to build physical tolerance to meet the demand of the activity. The aim of this study was to ascertain the frequency of upper body muscular skills in contemporary and ballet dance performance.
View Article and Find Full Text PDFJ Dance Med Sci
January 2025
Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.
Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).
View Article and Find Full Text PDFSmall
January 2025
Nanotechnology and Bio-Engineering Research Group, Atlantic Technological University, ATU Sligo, Ash Lane, Sligo, F91 YW50, Ireland.
The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!