The mite infests colonies and causes significant harm. Traditional treatments have become less effective because of mite resistance development and can also generate residues inside beehives. This study aimed to gauge the efficacy of a beehive-derived postbiotic in reducing viability and to explore its synergies with organic compounds. Four lactic acid bacteria (LAB) species, , , , and , were isolated and tested in a postbiotic form (preparations of inanimate microorganisms and/or their components) via bioassays. , , and notably reduced the mite viability compared to the control, and they were further tested together as a single postbiotic product (POS). Further bioassays were performed to assess the impact of the POS and its combinations with oxalic acid and oregano essential oil. The simple products and combinations (POS/Oregano, POS/Oxalic, Oregano/Oxalic, and POS/Oregano/Oxalic) decreased the mite viability. The most effective were the oxalic acid combinations (POS/Oregano/Oxalic, Oxalic/Oregano, POS/Oxalic), showing significant improvements compared to the individual products. These findings highlight the potential of combining organic products as a vital strategy for controlling infection. This study suggests that these combinations could serve as essential tools for combating the impact of mites on bee colonies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816111 | PMC |
http://dx.doi.org/10.3390/insects15010067 | DOI Listing |
Dalton Trans
January 2025
DICATECh, Politecnico di Bari, Bari, I-70125, Italy.
This systematic study delves into the synthesis and characterization of robust bi-functional aminopropyl-tagged periodic mesoporous organosilica with a high loading of small imidazolium bridges in its framework (PrNH@R-PMO-IL, ∼2 mmol g of IL). The materials proved to be a reliable and enduring support for the immobilization of Ru species, demonstrating strong performance and excellent selectivity in the -bromination of various derivatives of 2-phenylpyridine compounds and other heterocycles, showcasing its effectiveness and robust nature. The synthesized materials were thoroughly characterized to determine their structural properties, such as pore size distribution, loading of organic groups, and surface area, using various analytical techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre de Recherche Scientifique Et Technique en Analyses Physico-Chimiques, CP 42004, Bou-Ismail, Tipaza, Algeria.
ZnO-CoO material was successfully synthesized by the co-precipitation method and used as a catalyst for the removal of diclofenac sodium (DCF). ZnO-CoO exhibited higher catalytic activity in the catalytic process compared to the photocatalytic processes. Under optimum conditions, the activation of peroxymonosulfate (PMS) by ZnO-CoO achieved approximately 99% removal of DCF, confirming the effective adsorption and activation of PMS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Thermoelectric technology enables the direct and reversible conversion of heat into electrical energy without air pollution. Herein, the stability, electronic structure, and thermoelectric properties of methoxy-functionalized MC(OMe) (M = Sc, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, and W) were systematically investigated using first-principles calculations and semiclassical Boltzmann transport theory. All MXenes, except those with M = Cr, Mo, and W, can be synthesized by substituting Cl- and Br-functionalized MXenes with deprotonated methanol, with stability governed by the M-O bond strength.
View Article and Find Full Text PDFLangmuir
January 2025
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Advanced oxidation technology plays an important role in wastewater treatment due to active substances with high redox potential. Biochar is a versatile and functional biomass material. It can be used for resource management of various waste biomasses.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
This perspective highlights the transformative potential of Metal-Organic Frameworks (MOFs) in environmental and healthcare sectors. It discusses work that has advanced beyond technology readiness levels of >4 including applications in capture, storage, and conversion of gases to value added products. This work showcases efforts in the most salient applications of MOFs which have been performed at a great cadence, enabled by the federal government, large companies, and startups to commercialize these technologies despite facing significant challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!