The composition of an image is a critical element chosen by the author to construct an image that conveys a narrative and related emotions. Other key elements include framing, lighting, and colors. Assessing classical and simple composition rules in an image, such as the well-known "rule of thirds", has proven effective in evaluating the aesthetic quality of an image. It is widely acknowledged that composition is emphasized by the presence of leading lines. While these leading lines may not be explicitly visible in the image, they connect key points within the image and can also serve as boundaries between different areas of the image. For instance, the boundary between the sky and the ground can be considered a leading line in the image. Making the image's composition explicit through a set of leading lines is valuable when analyzing an image or assisting in photography. To the best of our knowledge, no computational method has been proposed to trace image leading lines. We conducted user studies to assess the agreement among image experts when requesting them to draw leading lines on images. According to these studies, which demonstrate that experts concur in identifying leading lines, this paper introduces a fully automatic computational method for recovering the leading lines that underlie the image's composition. Our method consists of two steps: firstly, based on feature detection, potential weighted leading lines are established; secondly, these weighted leading lines are grouped to generate the leading lines of the image. We evaluate our method through both subjective and objective studies, and we propose an objective metric to compare two sets of leading lines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816544 | PMC |
http://dx.doi.org/10.3390/jimaging10010005 | DOI Listing |
Mol Omics
January 2025
Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India.
Lung cancer remains the leading cause of cancer-related deaths worldwide due to its poor prognosis. Despite significant advancements in the understanding of cancer development, improvements in diagnostic methods, and multimodal therapeutic regimens, the prognosis of lung cancer has still not improved. Therefore, it is reasonable to look for newer and alternative medicines for treatment.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Metastasis represents a stage in which the therapeutic objective changes from curing disease to prolonging survival, as detection typically occurs at advanced stages. Technologies for the early identification of disease would enable treatment at a lower disease burden and heterogeneity. Herein, we investigate the vascular dynamics within a synthetic metastatic niche as a potential marker of disease progression.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
T-box transcription factor 21 (TBX21) plays a vital role in regulating immune responses, systemic diseases, and tumor progression. However, the role of TBX21 in colorectal cancer (CRC) metastasis remains unclear. In this study, we observed that TBX21 expression was marked decreased in CRC tissues compared to normal tissues and was negatively correlated with TNM stages.
View Article and Find Full Text PDFNature
January 2025
Max-Planck-Institut für Quantenoptik, Garching, Germany.
The relation between d-wave superconductivity and stripes is fundamental to the understanding of ordered phases in high-temperature cuprate superconductors. These phases can be strongly influenced by anisotropic couplings, leading to higher critical temperatures, as emphasized by the recent discovery of superconductivity in nickelates. Quantum simulators with ultracold atoms provide a versatile platform to engineer such couplings and to observe emergent structures in real space with single-particle resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!