Biclustering of Log Data: Insights from a Computer-Based Complex Problem Solving Assessment.

J Intell

Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing 100875, China.

Published: January 2024

Computer-based assessments provide the opportunity to collect a new source of behavioral data related to the problem-solving process, known as log file data. To understand the behavioral patterns that can be uncovered from these process data, many studies have employed clustering methods. In contrast to one-mode clustering algorithms, this study utilized biclustering methods, enabling simultaneous classification of test takers and features extracted from log files. By applying the biclustering algorithms to the "Ticket" task in the PISA 2012 CPS assessment, we evaluated the potential of biclustering algorithms in identifying and interpreting homogeneous biclusters from the process data. Compared with one-mode clustering algorithms, the biclustering methods could uncover clusters of individuals who are homogeneous on a subset of feature variables, holding promise for gaining fine-grained insights into students' problem-solving behavior patterns. Empirical results revealed that specific subsets of features played a crucial role in identifying biclusters. Additionally, the study explored the utilization of biclustering on both the action sequence data and timing data, and the inclusion of time-based features enhanced the understanding of students' action sequences and scores in the context of the analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10817361PMC
http://dx.doi.org/10.3390/jintelligence12010010DOI Listing

Publication Analysis

Top Keywords

process data
8
one-mode clustering
8
clustering algorithms
8
biclustering methods
8
biclustering algorithms
8
data
7
biclustering
6
biclustering log
4
log data
4
data insights
4

Similar Publications

Spherical tanks have been predominantly used in process industries due to their large storage capability. The fundamental challenges in process industries require a very efficient controller to control the various process parameters owing to their nonlinear behavior. The current research work in this paper aims to propose the Approximate Generalized Time Moments (AGTM) optimization technique for designing Fractional-Order PI (FOPI) and Fractional-Order PID (FOPID) controllers for the nonlinear Single Spherical Tank Liquid Level System (SSTLLS).

View Article and Find Full Text PDF

This study aimed to calculate Italy's first national maternal mortality ratio (MMR) through an innovative record-linkage approach within the enhanced Italian Obstetric Surveillance System (ItOSS). A record-linkage retrospective cohort study was conducted nationwide, encompassing all women aged 11-59 years with one or more hospitalizations related to pregnancy or pregnancy outcomes from 2011 to 2019. Maternal deaths were identified by integrating data from the Death Registry and national and regional Hospital Discharge Databases supported by the integration of findings from confidential enquiries conducted through active surveillance.

View Article and Find Full Text PDF

The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.

View Article and Find Full Text PDF

Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!