Hydrogen sulfide (HS) is an environmental toxicant of significant health concern. The brain is a major target in acute HS poisoning. This study was conducted to test the hypothesis that acute and subchronic ambient HS exposures alter the brain metabolome. Male 7-8-week-old C57BL/6J mice were exposed by whole-body inhalation to 1000 ppm HS for 45 min and euthanized at 5 min or 72 h for acute exposure. For subchronic study, mice were exposed to 5 ppm HS 2 h/day, 5 days/week for 5 weeks. Control mice were exposed to room air. The brainstem was removed for metabolomic analysis. Enrichment analysis showed that the metabolomic profiles in acute and subchronic HS exposures matched with those of cerebral spinal fluid from patients with seizures or Alzheimer's disease. Acute HS exposure decreased excitatory neurotransmitters, aspartate, and glutamate, while the inhibitory neurotransmitter, serotonin, was increased. Branched-chain amino acids and glucose were increased by acute HS exposure. Subchronic HS exposure within OSHA guidelines surprisingly decreased serotonin concentration. In subchronic HS exposure, glucose was decreased, while polyunsaturated fatty acids, inosine, and hypoxanthine were increased. Collectively, these results provide important mechanistic clues for acute and subchronic ambient HS poisoning and show that HS alters brainstem metabolome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10819975PMC
http://dx.doi.org/10.3390/metabo14010053DOI Listing

Publication Analysis

Top Keywords

acute subchronic
16
mice exposed
12
acute exposure
12
acute
8
hydrogen sulfide
8
subchronic ambient
8
exposure subchronic
8
subchronic exposure
8
subchronic
7
exposure
6

Similar Publications

In this study, antiulcer activity of ethanolic extract and solvent fractions of the aerial part of was investigated using ethanol-induced model of gastric ulceration in rats. The results showed that ethyl acetate, non-polar components and diethyl ether fractions have a remarkable antiulcerogenic activity; because they exhibited control-ulcer protection by 85.2%, 77.

View Article and Find Full Text PDF

seed oil for possible human consumption: A toxicological assessment of its phorbol esters.

Toxicol Rep

June 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China.

seeds are known for their high oil content, and the oil extracted from these seeds has been traditionally utilized in biodiesel production. The presence of toxic compounds, specifically phorbol esters (PEs), in seed oil (JCSO) has blocked its use for human consumption. This article presents a thorough literature review that summarizes the latest research on the toxicological effects, including acute toxicity, genotoxicity, carcinogenicity, and chronic toxicity associated with phorbol esters (JCPEs).

View Article and Find Full Text PDF

HemoHIM is a functional food ingredient comprising a triple herbal combination of extracts from Nakai, Makino, and Pallas. It was developed to aid the recovery of impaired immune function. Although it is widely used to treat various immune disorders in Korea, its potential toxicity has not been extensively investigated.

View Article and Find Full Text PDF

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E).

Toxicol Ind Health

January 2025

Cincinnati, OH, USA.

(E)-1,1,1,2,2,5,5,6,6,6-Decafluoro-3-hexene (HFO-153-10mczz-E) (CASRN 1256353-26-0) is a volatile liquid proposed for use as a new low global-warming potential dielectric fluid in cooling applications. Workplace exposures are expected to be by inhalation exposure. The substance has low acute inhalation toxicity as indicated by a 4-h inhalation LC value of approximately 8000 ppm.

View Article and Find Full Text PDF

Subchronic Treatment with CBZ Transiently Attenuates Its Anticonvulsant Activity in the Maximal Electroshock-Induced Seizure Test in Mice.

Int J Mol Sci

December 2024

Independent Experimental Neuropathophysiology Unit, Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland.

The objective of this study is to evaluate the anticonvulsant efficacy of carbamazepine (CBZ) following acute and chronic administration across four treatment protocols in a murine model of maximal electroshock-induced seizures. A single dose of the drug was utilized as a control. The neurotoxic effects were evaluated in the chimney test and the passive avoidance task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!