Background: Nanoparticles (NPs) have been extensively utilized as a drug delivery system to control the release of therapeutic agents to treat cardiac injuries. However, despite the advantages of utilizing NP-based drug delivery for treating heart diseases, the current delivery system lacks specificity in targeting the cardiac tissue, thus limiting its application.

Methods: We created three linear peptides, each consisting of 16-24 amino acids. These peptides were conjugated on the surface of NPs, resulting in the formation of cardiac targeting peptide (CTP)-NPs (designated as CTP-NP1, CTP-NP2, and CTP-NP3). To assess their effectiveness, we compared the binding efficiency of these three CTP-NPs to human and mouse cardiomyocytes. Additionally, we determined their distribution 24 h after injecting the CTP-NPs intravenously into adult C57BL/6J mice.

Results: When compared to control NPs without CTP (Con-NPs), all three CTP-NPs exhibited significantly increased binding affinity to both human and mouse cardiomyocytes in vitro and enhanced retention in mouse hearts in vivo. A thorough assessment of the heart sections demonstrated that the binding specificity of CTP-NP3 to cardiomyocytes in vivo was significantly greater than that of Con-NPs. None of the three CTP-NPs were proven to cause cardiomyocyte apoptosis.

Conclusions: Biocompatible and safe CTP-NP3 can target the heart via binding to cardiomyocytes. This approach of targeting specific molecules-coated NPs may help in delivering therapeutic compounds to cardiomyocytes for the treatment of heart diseases with high efficacy and low toxicity to other tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812947PMC
http://dx.doi.org/10.3390/biology13010047DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
three ctp-nps
12
delivery system
8
heart diseases
8
human mouse
8
mouse cardiomyocytes
8
con-nps three
8
cardiomyocytes
6
ctp-nps
5
peptide-guided nanoparticle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!