Reduced Carbon Dioxide by Overexpressing Transgene in Arabidopsis and Rice: Implications in Carbon Neutrality through Genetically Engineered Plants.

Biology (Basel)

Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.

Published: December 2023

With the increasing challenges of climate change caused by global warming, the effective reduction of carbon dioxide (CO) becomes an urgent environmental issue for the sustainable development of human society. Previous reports indicated increased biomass in genetically engineered (GE) Arabidopsis and rice overexpressing the 5-enolpyruvylshikimate-3-phosphate synthase () gene, suggesting the possibility of consuming more carbon by GE plants. However, whether overexpressing the gene in GE plants consumes more CO remains a question. To address this question, we measured expression of the gene, intercellular CO concentration, photosynthetic ratios, and gene expression (RNA-seq and RT-qPCR) in GE (overexpression) and non-GE (normal expression) Arabidopsis and rice plants. Results showed substantially increased expression accompanied with CO consumption in the GE Arabidopsis and rice plants. Furthermore, overexpressing the gene affected carbon-fixation related biological pathways. We also confirmed significant upregulation of four key carbon-fixation associated genes, in addition to increased photosynthetic ratios, in all GE plants. Our finding of significantly enhanced carbon fixation in GE plants overexpressing the transgene provides a novel strategy to reduce global CO for carbon neutrality by genetic engineering of plant species, in addition to increased plant production by enhanced photosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10813641PMC
http://dx.doi.org/10.3390/biology13010025DOI Listing

Publication Analysis

Top Keywords

arabidopsis rice
16
plants overexpressing
12
carbon dioxide
8
overexpressing transgene
8
carbon neutrality
8
genetically engineered
8
overexpressing gene
8
photosynthetic ratios
8
rice plants
8
addition increased
8

Similar Publications

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.

View Article and Find Full Text PDF

Morphological, Physiological, and Molecular Responses to Heat Stress in Brassicaceae.

Plants (Basel)

January 2025

Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.

Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.

View Article and Find Full Text PDF

Genome-Wide Identification and Expression Analysis Under Abiotic Stress of the Gene Family in Maize ().

Genes (Basel)

January 2025

Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.

Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize () () gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways.

View Article and Find Full Text PDF

Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.

Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!