Research on Image Stitching Algorithm Based on Point-Line Consistency and Local Edge Feature Constraints.

Entropy (Basel)

Key Laboratory of Signal Detection and Processing, Department of Computer Science and Technology, Xinjiang University, Urumqi 830017, China.

Published: January 2024

Image stitching aims to synthesize a wider and more informative whole image, which has been widely used in various fields. This study focuses on improving the accuracy of image mosaic and proposes an image mosaic method based on local edge contour matching constraints. Because the accuracy and quantity of feature matching have a direct influence on the stitching result, it often leads to wrong image warpage model estimation when feature points are difficult to detect and match errors are easy to occur. To address this issue, the geometric invariance is used to expand the number of feature matching points, thus enriching the matching information. Based on Canny edge detection, significant local edge contour features are constructed through operations such as structure separation and edge contour merging to improve the image registration effect. The method also introduces the spatial variation warping method to ensure the local alignment of the overlapping area, maintains the line structure in the image without bending by the constraints of short and long lines, and eliminates the distortion of the non-overlapping area by the global line-guided warping method. The method proposed in this paper is compared with other research through experimental comparisons on multiple datasets, and excellent stitching results are obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154487PMC
http://dx.doi.org/10.3390/e26010061DOI Listing

Publication Analysis

Top Keywords

local edge
12
edge contour
12
image
8
image stitching
8
image mosaic
8
feature matching
8
warping method
8
edge
5
method
5
stitching algorithm
4

Similar Publications

A New Global Mangrove Height Map with a 12 meter spatial resolution.

Sci Data

January 2025

ETH Zürich, Institut für Umweltingenieurwissenschaften, Zürich, Switzerland.

Mangrove forests thrive along global tropical coasts, acting as a barrier that protects coastlines against storm surges and as nurseries for an entire food web. They are also known for their high carbon sequestration rates and soil carbon stocks. We introduce a new global mangrove canopy height map generated from TanDEM-X spaceborne elevation measurements collected during the 2011-2013 period with a 12-meter spatial resolution and an accuracy of 2.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.

We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.

View Article and Find Full Text PDF

20∗20∗60: A multilevel climate change analysis framework.

J Environ Manage

January 2025

Centro Studi PLINIVS, University of Naples Federico II, 80134, Naples, Italy; Department of Architecture, University of Naples Federico II, 80134, Naples, Italy. Electronic address:

Cities worldwide have established plans and policies to achieve climate-neutral and climate-resilient objectives in recent decades. Researches have demonstrated that Climate Change Action Plans generally fail to include mitigation and adaptation approaches in their planning processes, despite their importance. A proposed multilevel assessment of Climate Change Action Plans, urban regeneration, and building projects was used to analyze the ten cities most sustainable in terms of developing environmental strategies, including local climate action to determine the degree of adaptation and mitigation integration in cutting-edge contexts and to identify measures that show synergies and co-benefits for urban design practices.

View Article and Find Full Text PDF

The backbone extraction process is pivotal in expediting analysis and enhancing visualization in network applications. This study systematically compares seven influential statistical hypothesis-testing backbone edge filtering methods (Disparity Filter (DF), Polya Urn Filter (PF), Marginal Likelihood Filter (MLF), Noise Corrected (NC), Enhanced Configuration Model Filter (ECM), Global Statistical Significance Filter (GloSS), and Locally Adaptive Network Sparsification Filter (LANS)) across diverse networks. A similarity analysis reveals that backbones extracted with the ECM and DF filters exhibit minimal overlap with backbones derived from their alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!