In this investigation, a synthesis of Convolutional Neural Networks (CNNs) and Bayesian inference is presented, leading to a novel approach to the problem of Multiple Hypothesis Testing (MHT). Diverging from traditional paradigms, this study introduces a sequence-based uncalibrated Bayes factor approach to test many hypotheses using the same family of sampling parametric models. A two-step methodology is employed: initially, a learning phase is conducted utilizing simulated datasets encompassing a wide spectrum of null and alternative hypotheses, followed by a transfer phase applying this fitted model to real-world experimental sequences. The outcome is a CNN model capable of navigating the complex domain of MHT with improved precision over traditional methods, also demonstrating robustness under varying conditions, including the number of true nulls and dependencies between tests. Although indications of empirical evaluations are presented and show that the methodology will prove useful, more work is required to provide a full evaluation from a theoretical perspective. The potential of this innovative approach is further illustrated within the critical domain of genomics. Although formal proof of the consistency of the model remains elusive due to the inherent complexity of the algorithms, this paper also provides some theoretical insights and advocates for continued exploration of this methodology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154554 | PMC |
http://dx.doi.org/10.3390/e26010049 | DOI Listing |
J Neurol Sci
January 2025
Institute of Clinical Neuroimmunology and Biomedical Center (BMC), LMU University Hospital, Faculty of Medicine, LMU Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
Background: Critical life events challenge our competence to develop coping strategies. In people with multiple sclerosis (MS), the impact of genetics, disease-specific, and psychometric factors on coping strategies have not been explored to date.
Methods: In a unique cohort of 56 monozygotic twins discordant for MS, we applied comprehensive psychometric and clinical testing to measure factors influencing the psychosocial impact (including stressors and coping strategies) of a critical life event, exemplified by the COVID-19 pandemic (measured by the COVID-19 Pandemic Mental Health Questionnaire, CoPaQ).
Pest Manag Sci
January 2025
Department of Entomology, National Chung Hsing University, Taichung City, Taiwan.
Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
G. Nadjakov Institute of Solid-State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria.
: Orthodontic archwires undergo chemical and structural changes in the complex intraoral environment. The present work aims to investigate the safe duration for intraoral use (related to the nickel release hypothesis) of different types of nickel-containing wires. By analyzing how the nickel content (NC) varies over time, we aim to provide practical recommendations for the optimal use of said archwires.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States.
Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!