AI Article Synopsis

Article Abstract

The integration of artificial intelligence (AI), particularly through machine learning (ML) and deep learning (DL) algorithms, marks a transformative progression in medical imaging diagnostics. This technical note elucidates a novel methodology for semantic segmentation of the vertebral column in CT scans, exemplified by a dataset of 250 patients from Riga East Clinical University Hospital. Our approach centers on the accurate identification and labeling of individual vertebrae, ranging from C1 to the sacrum-coccyx complex. Patient selection was meticulously conducted, ensuring demographic balance in age and sex, and excluding scans with significant vertebral abnormalities to reduce confounding variables. This strategic selection bolstered the representativeness of our sample, thereby enhancing the external validity of our findings. Our workflow streamlined the segmentation process by eliminating the need for volume stitching, aligning seamlessly with the methodology we present. By leveraging AI, we have introduced a semi-automated annotation system that enables initial data labeling even by individuals without medical expertise. This phase is complemented by thorough manual validation against established anatomical standards, significantly reducing the time traditionally required for segmentation. This dual approach not only conserves resources but also expedites project timelines. While this method significantly advances radiological data annotation, it is not devoid of challenges, such as the necessity for manual validation by anatomically skilled personnel and reliance on specialized GPU hardware. Nonetheless, our methodology represents a substantial leap forward in medical data semantic segmentation, highlighting the potential of AI-driven approaches to revolutionize clinical and research practices in radiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814874PMC
http://dx.doi.org/10.3390/diagnostics14020185DOI Listing

Publication Analysis

Top Keywords

semantic segmentation
8
manual validation
8
automatization annotation
4
annotation combining
4
combining efficiency
4
efficiency expert
4
expert precision
4
precision integration
4
integration artificial
4
artificial intelligence
4

Similar Publications

Printed Circuit Board (PCB) design reconstruction is essential for addressing part obsolescence, intellectual property recovery, compliance, quality assurance, and enhancing national capabilities. Traditional methods for PCB design extraction, both non-geometry-based and geometry-based, have limitations in accuracy, efficiency, and scalability. This paper presents an automated approach, combining image processing and machine learning, to achieve 3D semantic segmentation of PCB X-ray Computed Tomography (X-ray CT) images and subsequent netlist extraction.

View Article and Find Full Text PDF

Comparative analysis of three methods for estimating the compositions of construction waste.

Waste Manag

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address:

Determination of the relative compositions of the mixed construction waste is crucial and an important step to enhance resource management. This information influences the design of construction waste recycling and sorting facilities, and aids in formulating effective management strategies for recycled and sorted waste products. However, different methods for waste sorting and composition recognition possess distinct characteristics and only apply to specific practical scenarios.

View Article and Find Full Text PDF

Urban focused semantically segmented datasets (e.g. ADE20k or CoCo) have been crucial in boosting research and applications in urban areas by providing rich sources of delineated objects in Street View Images (SVI).

View Article and Find Full Text PDF

The field of medical image segmentation powered by deep learning has recently received substantial attention, with a significant focus on developing novel architectures and designing effective loss functions. Traditional loss functions, such as Dice loss and Cross-Entropy loss, predominantly rely on global metrics to compare predictions with labels. However, these global measures often struggle to address challenges such as occlusion and nonuni-form intensity.

View Article and Find Full Text PDF

This paper presents a novel method for improving semantic segmentation performance in computer vision tasks. Our approach utilizes an enhanced UNet architecture that leverages an improved ResNet50 backbone. We replace the last layer of ResNet50 with deformable convolution to enhance feature representation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!