The aim of our study was to establish and compare the diagnostic accuracy and clinical applicability of published chest CT severity scoring systems used for COVID-19 pneumonia assessment and to propose the most efficient CT scoring system with the highest diagnostic performance and the most accurate prediction of disease severity. This retrospective study included 218 patients with PCR-confirmed SARS-CoV-2 infection and chest CT. Two radiologists blindly evaluated CT scans and calculated nine different CT severity scores (CT SSs). The diagnostic validity of CT SSs was tested by ROC analysis. Interobserver agreement was excellent (intraclass correlation coefficient: 0.982-0.995). The predominance of either consolidations or a combination of consolidations and ground-glass opacities (GGOs) was a predictor of more severe disease (both < 0.005), while GGO prevalence alone was not. Correlation between all CT SSs was high, ranging from 0.848 to 0.971. CT SS 30 had the highest diagnostic accuracy (AUC = 0.805) in discriminating mild from severe COVID-19 disease compared to all the other proposed scoring systems (AUC range 0.755-0.788). In conclusion, CT SS 30 achieved the highest diagnostic accuracy in predicting the severity of COVID-19 disease while maintaining simplicity, reproducibility, and applicability in complex clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814884PMC
http://dx.doi.org/10.3390/diagnostics14020148DOI Listing

Publication Analysis

Top Keywords

diagnostic accuracy
16
highest diagnostic
12
disease severity
8
severity scores
8
covid-19 pneumonia
8
scoring systems
8
covid-19 disease
8
severity
6
disease
5
diagnostic
5

Similar Publications

Proper management of cattle reproduction has a major impact on the efficiency and profitability of dairy production. Ultrasound examination and transrectal palpation or the pregnancy-associated glycoprotein (PAG) test are currently the most commonly used methods for pregnancy diagnosis. However, alternative methods to those mentioned above are constantly being sought in order to minimise stress during the examination, the cost of veterinary services and to reduce the rate of errors in pregnancy diagnosis.

View Article and Find Full Text PDF

Development of a capsid protein-based ELISA for the detection of PCV2 antibodies in swine serum.

Pol J Vet Sci

December 2024

Key Laboratory of Animal Pathogen and Biosafety Education of the Ministry of Education, Zhengzhou 450000, China.

Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.

View Article and Find Full Text PDF

Motion Cognitive Decoding of Cross-Subject Motor Imagery Guided on Different Visual Stimulus Materials.

J Integr Neurosci

December 2024

Department of Computer Science and Engineering, Shaoxing University, 312000 Shaoxing, Zhejiang, China.

Background: Motor imagery (MI) plays an important role in brain-computer interfaces, especially in evoking event-related desynchronization and synchronization (ERD/S) rhythms in electroencephalogram (EEG) signals. However, the procedure for performing a MI task for a single subject is subjective, making it difficult to determine the actual situation of an individual's MI task and resulting in significant individual EEG response variations during motion cognitive decoding.

Methods: To explore this issue, we designed three visual stimuli (arrow, human, and robot), each of which was used to present three MI tasks (left arm, right arm, and feet), and evaluated differences in brain response in terms of ERD/S rhythms.

View Article and Find Full Text PDF

Introduction: The Steinberg classification system is commonly used by orthopedic surgeons to stage the severity of patients with osteonecrosis of the femoral head (ONFH), and it includes mild, moderate, and severe grading of each stage based on the area of the femoral head affected. However, clinicians mostly grade approximately by visual assessment or not at all. To accurately distinguish the mild, moderate, or severe grade of early stage ONFH, we propose a convolutional neural network (CNN) based on magnetic resonance imaging (MRI) of the hip joint of patients to accurately grade and aid diagnosis of ONFH.

View Article and Find Full Text PDF

Deep learning-based automated diagnosis of temporomandibular joint anterior disc displacement and its clinical application.

Front Physiol

December 2024

Department of Oral & Maxillofacial Surgery, Shenzhen Stomatology Hospital, Affiliated to Shenzhen University, Shenzhen, Guangdong Province, China.

Introduction: This study aimed to develop a deep learning-based method for interpreting magnetic resonance imaging (MRI) scans of temporomandibular joint (TMJ) anterior disc displacement (ADD) and to formulate an automated diagnostic system for clinical practice.

Methods: The deep learning models were utilized to identify regions of interest (ROI), segment TMJ structures including the articular disc, condyle, glenoid fossa, and articular tubercle, and classify TMJ ADD. The models employed Grad-CAM heatmaps and segmentation annotation diagrams for visual diagnostic predictions and were deployed for clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!