Accurate energy data from noncovalent interactions are essential for constructing force fields for molecular dynamics simulations of bio-macromolecular systems. There are two important practical issues in the construction of a reliable force field with the hope of balancing the desired chemical accuracy and working efficiency. One is to determine a suitable quantum chemistry level of theory for calculating interaction energies. The other is to use a suitable continuous energy function to model the quantum chemical energy data. For the first issue, we have recently calculated the intermolecular interaction energies using the SAPT0 level of theory, and we have systematically organized these energies into the ab initio SOFG-31 (homodimer) and SOFG-31-heterodimer datasets. In this work, we re-calculate these interaction energies by using the more advanced SAPT2 level of theory with a wider series of basis sets. Our purpose is to determine the SAPT level of theory proper for interaction energies with respect to the CCSD(T)/CBS benchmark chemical accuracy. Next, to utilize these energy datasets, we employ one of the well-developed machine learning techniques, called the CLIFF scheme, to construct a general-purpose force field for biomolecular dynamics simulations. Here we use the SOFG-31 dataset and the SOFG-31-heterodimer dataset as the training and test sets, respectively. Our results demonstrate that using the CLIFF scheme can reproduce a diverse range of dimeric interaction energy patterns with only a small training set. The overall errors for each SAPT energy component, as well as the SAPT total energy, are all well below the desired chemical accuracy of ~1 kcal/mol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154266PMC
http://dx.doi.org/10.3390/bioengineering11010051DOI Listing

Publication Analysis

Top Keywords

level theory
16
interaction energies
16
force field
12
chemical accuracy
12
machine learning
8
energy
8
interaction energy
8
energy datasets
8
energy data
8
dynamics simulations
8

Similar Publications

Background: Although evidence suggests that dental floss contains perfluoroalkyl and polyfluoroalkyl substances (PFASs), it is still uncertain whether the use of dental floss contributes to an increased risk of PFAS exposure.

Methods: We analysed data on serum PFAS concentrations and dental floss usage in a cohort of 6750 adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2020. In our study, we used logistic regression, a survey-weighted linear model, item response theory (IRT) scores, inverse probability weights (IPWs) and sensitivity analysis to assess the potential impact of dental floss usage on human serum PFAS levels.

View Article and Find Full Text PDF

As organizations are increasingly turning to voluntary wellness programs to improve employee well-being, the majority of studies in literature have focused on corporate-level benefits of wellness programs, such as productivity. However, there is a scarcity of studies that examine the intrinsic motivators that influence employee participation in such programs. In this study, we use a unique secondary dataset from a voluntary corporate wellness program and propose a novel theoretical framework based on motivational and behavioral theories to examine and understand the participants' behavior.

View Article and Find Full Text PDF

goChem: A Composable Library for Multi-Scale Computational Chemistry Data Analysis.

J Comput Chem

January 2025

Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.

Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.

View Article and Find Full Text PDF

Extending the MST Model to Large Biomolecular Systems: Parametrization of the ddCOSMO-MST Continuum Solvation Model.

J Comput Chem

January 2025

Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Barcelona, Spain.

Continuum solvation models such as the polarizable continuum model and the conductor-like screening model are widely used in quantum chemistry, but their application to large biosystems is hampered by their computational cost. Here, we report the parametrization of the Miertus-Scrocco-Tomasi (MST) model for the prediction of hydration free energies of neutral and ionic molecules based on the domain decomposition formulation of COSMO (ddCOSMO), which allows a drastic reduction of the computational cost by several orders of magnitude. We also introduce several novelties in MST, like a new definition of atom types based on hybridization and an automatic setup of the cavity for charged regions.

View Article and Find Full Text PDF

Background: Postpartum is a critical period to interrupt weight gain across the lifespan, decrease weight-related risk in future pregnancies, promote healthy behaviors that are often adopted during pregnancy, and improve long-term health. Because the postpartum period is marked by unique challenges to a person's ability to prioritize healthy behaviors, a multi-level/domain approach to intervention beyond the individual-level factors of diet and activity is needed.

Objectives: The purpose of this study was to understand postpartum people's perceptions about the relationship between their social networks and support, and their health behaviors and weight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!