The world-wide COVID-19 pandemic has promoted a series of alternative vaccination strategies aiming to elicit neutralizing adaptive immunity in the human host. However, restricted efficacies of these vaccines targeting epitopes on the spike (S) protein that is involved in primary viral entry were observed and putatively assigned to viral glycosylation as an effective escape mechanism. Besides the well-recognized N-glycan shield covering SARS-CoV-2 spike (S) proteins, immunization strategies may be hampered by heavy O-glycosylation and variable O-glycosites fluctuating depending on the organ sites of primary infection and those involved in immunization. A further complication associated with viral glycosylation arises from the development of autoimmune antibodies to self-carbohydrates, including O-linked blood group antigens, as structural parts of viral proteins. This outline already emphasizes the importance of viral glycosylation in general and, in particular, highlights the impact of the site-specific O-glycosylation of virions, since this modification is independent of sequons and varies strongly in dependence on cell-specific repertoires of peptidyl-N-acetylgalactosaminyltransferases with their varying site preferences and of glycan core-specific glycosyltransferases. This review summarizes the current knowledge on the viral O-glycosylation of the SARS-CoV-2 spike protein and its impact on virulence and immune modulation in the host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814047 | PMC |
http://dx.doi.org/10.3390/cells13020107 | DOI Listing |
Hum Vaccin Immunother
December 2025
Crucell Integration, Janssen Research and Development, Beerse, Belgium.
We conducted a randomized, Phase 2 trial to assess the safety and humoral immunogenicity of reduced doses/dose volume of the standard dose of Ad26.COV2.S COVID-19 vaccine (5 × 10 viral particles [vp]) in healthy adolescents aged 12-17 years.
View Article and Find Full Text PDFPept Sci (Hoboken)
November 2024
Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois 60637, United States of America.
The COVID-19 pandemic drove a uniquely fervent pursuit to explore the potential of peptide, antibody, protein, and small-molecule based antiviral agents against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The interaction between the SARS-CoV2 spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor that mediates viral cell entry was a particularly interesting target given its well described protein-protein interaction (PPI). This PPI is mediated by an α-helical portion of ACE2 binding to the receptor binding domain (RBD) of the spike protein and thought to be susceptible to blockade through molecular mimicry.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
Janssen Research and Development, Beerse, Belgium.
Background: Vaccine co-administration can increase vaccination coverage. We assessed the safety, reactogenicity, and immunogenicity of concomitant administration of Ad26.COV2.
View Article and Find Full Text PDFHeliyon
January 2025
Pediatric Infectious Diseases Unit, Department of Pediatrics, Gregorio Marañón University Hospital, Madrid, Spain.
Objective: The aim of this prospective cohort study is to analyse the humoral and cellular vaccine responses in paediatric heart transplant recipients (HTR, n = 12), and compare it with the response in healthy controls (HC, n = 14). All participants were 5-18 years old and vaccinated with mRNA vaccine against SARS-CoV-2 between December 2021 and May 2022.
Methods: The humoral response was measured by quantifying antibody titers against SARS-CoV-2 spike protein (anti-S).
Hum Vaccin Immunother
December 2025
Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention (Jiangsu Provincial Academy of Preventive Medicine), Nanjing, China.
INO-4800 represents a DNA-based vaccine encoding the spike protein of SARS-CoV-2. This phase 2 trial evaluated the immunogenicity and safety of INO-4800 as a primary vaccination series in adults. We conducted a randomized, observer-blind, placebo-controlled phase 2 trial of intradermal injection of INO-4800 in both healthy adults and elderly individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!