State-of-the-Art Advances and Current Applications of Gel-Based Membranes.

Gels

Clinical Department of Orthopedics and Traumatology II, Clinical Emergency Hospital, Calea Floreasca 8, 014461 Bucharest, Romania.

Published: January 2024

Gel-based membranes, a fusion of polymer networks and liquid components, have emerged as versatile tools in a variety of technological domains thanks to their unique structural and functional attributes. Historically rooted in basic filtration tasks, recent advancements in synthetic strategies have increased the mechanical strength, selectivity, and longevity of these membranes. This review summarizes their evolution, emphasizing breakthroughs that have positioned them at the forefront of cutting-edge applications. They have the potential for desalination and pollutant removal in water treatment processes, delivering efficiency that often surpasses conventional counterparts. The biomedical field has embraced them for drug delivery and tissue engineering, capitalizing on their biocompatibility and tunable properties. Additionally, their pivotal role in energy storage as gel electrolytes in batteries and fuel cells underscores their adaptability. However, despite monumental progress in gel-based membrane research, challenges persist, particularly in scalability and long-term stability. This synthesis provides an overview of the state-of-the-art applications of gel-based membranes and discusses potential strategies to overcome current limitations, laying the foundation for future innovations in this dynamic field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815837PMC
http://dx.doi.org/10.3390/gels10010039DOI Listing

Publication Analysis

Top Keywords

gel-based membranes
12
applications gel-based
8
state-of-the-art advances
4
advances current
4
current applications
4
gel-based
4
membranes
4
membranes gel-based
4
membranes fusion
4
fusion polymer
4

Similar Publications

Permeation Enhancer in Microemulsions and Microemulsion-Based Gels: A Comparison of Diethylene Glycol Monoethyl Ether and Oleyl Alcohol.

Gels

January 2025

Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, USA.

Microemulsions have been commonly used with various permeation enhancers to improve permeability through the skin. The purpose of this study was to compare the release and permeation ability of two commonly used permeation enhancers-diethylene glycol monoethyl ether (DGME) and oleyl alcohol-by the changes in oil composition, the addition of a gelling agent, and water content using ibuprofen as a model drug. Four microemulsions were formulated, selection was based on ternary phase diagrams, and physicochemical properties were evaluated.

View Article and Find Full Text PDF

The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.

View Article and Find Full Text PDF

Background: Adherence of Helicobacter pylori to the surface of the gastric mucosa is the initial and crucial step for its survival and colonization in the harsh conditions of the stomach. We had previously demonstrated that daphnetin has anti-adhesion effect.

Purpose: This study aims to explore the mechanisms of daphnetin to reduce H.

View Article and Find Full Text PDF

Alzheimer's disease (ALZ) is a neurodegenerative disease that damages neuronal cells and causes decline in cognitive abilities. Administration of cholinesterase inhibitor compounds is the primary choice in the treatment of ALZ, one of which is rivastigmine (RVT). Several routes of administration of RVT are available, such as oral and transdermal.

View Article and Find Full Text PDF

-Acyl--alkyl/aryl Sulfonamide Chemistry Assisted by Proximity for Modification and Covalent Inhibition of Endogenous Proteins in Living Systems.

Acc Chem Res

January 2025

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

ConspectusSelective chemical modification of endogenous proteins in living systems with synthetic small molecular probes is a central challenge in chemical biology. Such modification has a variety of applications important for biological and pharmaceutical research, including protein visualization, protein functionalization, proteome-wide profiling of enzyme activity, and irreversible inhibition of protein activity. Traditional chemistry for selective protein modification in cells largely relies on the high nucleophilicity of cysteine residues to ensure target-selectivity and site-specificity of modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!