Antibiotic development traditionally involved large Phase 3 programs, preceded by Phase 2 studies. Recognizing the high unmet medical need for new antibiotics and, in some cases, challenges to conducting large clinical trials, regulators created a streamlined clinical development pathway in which a lean clinical efficacy dataset is complemented by nonclinical data as supportive evidence of efficacy. In this context, translational Pharmacokinetic/Pharmacodynamic (PK/PD) plays a key role and is a major contributor to a "robust" nonclinical package. The classical PK/PD index approach, proven successful for established classes of antibiotics, is at the core of recent antibiotic approvals and the current antibacterial PK/PD guidelines by regulators. Nevertheless, in the case of novel antibiotics with a novel Mechanism of Action (MoA), there is no prior experience with the PK/PD index approach as the basis for translating nonclinical efficacy to clinical outcome, and additional nonclinical studies and PK/PD analyses might be considered to increase confidence. In this review, we discuss the value and limitations of the classical PK/PD approach and present potential risk mitigation activities, including the introduction of a semi-mechanism-based PK/PD modeling approach. We propose a general nonclinical PK/PD package from which drug developers might choose the studies most relevant for each individual candidate in order to build up a "robust" nonclinical PK/PD understanding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812724PMC
http://dx.doi.org/10.3390/antibiotics13010072DOI Listing

Publication Analysis

Top Keywords

pk/pd approach
12
pk/pd
9
"robust" nonclinical
8
classical pk/pd
8
nonclinical pk/pd
8
nonclinical
6
translational pk/pd
4
pk/pd development
4
development novel
4
novel antibiotics-a
4

Similar Publications

China is experiencing a demographic shift as its population ages. The elderly population becomes increasingly susceptible to pneumonia. Pneumonia in the elderly is characterized by its insidious onset, rapid progression, multiple comorbidities, poor prognosis, and high morbidity and mortality.

View Article and Find Full Text PDF

Population Pharmacokinetics and Pharmacodynamics of Sotalol Following Expedited Intravenous Loading in Patients With Atrial Arrhythmias.

CPT Pharmacometrics Syst Pharmacol

January 2025

Division of Clinical Pharmacology, Department of Pediatrics, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, USA.

Sotalol, a class III antiarrhythmic agent, is used to maintain sinus rhythm in patients with atrial fibrillation or atrial flutter (AFIB/AFL). Despite its efficacy, sotalol's use is limited by its potential to cause life-threatening ventricular arrhythmias due to QT interval prolongation. Traditionally, sotalol administration required hospitalization to monitor these risks.

View Article and Find Full Text PDF

Introduction: Infectious disease treatments are transitioning from a one-size-fits-all approach to a more tailored approach. The increasing adoption of therapeutic drug monitoring (TDM) of antimicrobials is a clear example of this trend. Routine antimicrobial TDM in critically ill patients should be mandatory.

View Article and Find Full Text PDF

Purpose: Determining the optimal dosage of norvancomycin (NVCM) for Chinese patients with community-acquired pneumonia (CAP) caused by gram-positive cocci remains uncertain. This research aimed to identify influential factors affecting NVCM pharmacokinetics and explore optimal dosage regimens via population pharmacokinetic (PPK) analysis.

Patients And Methods: A prospective analysis was conducted at the Second Hospital of Hebei Medical University (Shijiazhuang, China).

View Article and Find Full Text PDF
Article Synopsis
  • Axatilimab is a monoclonal antibody that targets CSF-1R, approved for treating chronic graft-versus-host disease (cGVHD) and being researched for other conditions like idiopathic pulmonary fibrosis.
  • A study involving 325 participants investigated the drug's pharmacokinetics (PK) and pharmacodynamics (PD), showing that it reduces certain immune cell levels, which affects enzyme levels in the bloodstream.
  • The final PK/PD model, based on complex math involving differential equations, identified several factors influencing axatilimab's effectiveness and helped shape dosing strategies for cGVHD patients.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!