Traditional clinical methodologies often fall short of revealing the complex interplay of multiple components and targets within the human body. This study was designed to explore the complex and synergistic effects of phytochemicals in a plant-based multivitamin/mineral supplement (PBS) on oxidative stress and inflammation in healthy individuals. Utilizing a systems biology framework, we integrated clinical with multi-omics analyses, including UPLC-Q-TOF-MS for 33 phytochemicals, qPCR for 42 differential transcripts, and GC-TOF-MS for 17 differential metabolites. A Gene Ontology analysis facilitated the identification of 367 biological processes linked to oxidative stress and inflammation. As a result, a comprehensive network was constructed consisting of 255 nodes and 1579 edges, featuring 10 phytochemicals, 26 targets, and 218 biological processes. Quercetin was identified as having the broadest target spectrum, succeeded by ellagic acid, hesperidin, chlorogenic acid, and quercitrin. Moreover, several phytochemicals were associated with key genes such as , , , , and , which play roles in the Toll-like receptor, NF-kappa B, adipocytokine, and C-type lectin receptor signaling pathways. This clinical data-driven network system approach has significantly advanced our comprehension of a PBS's effects by pinpointing pivotal phytochemicals and delineating their synergistic actions, thus illuminating potential molecular mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812391PMC
http://dx.doi.org/10.3390/antiox13010036DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
stress inflammation
12
synergistic actions
8
phytochemicals plant-based
8
plant-based multivitamin/mineral
8
multivitamin/mineral supplement
8
inflammation healthy
8
healthy individuals
8
systems biology
8
biological processes
8

Similar Publications

Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.

View Article and Find Full Text PDF

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Efficacy and Safety of Sulforaphane Added to Antipsychotics for the Treatment of Negative Symptoms of Schizophrenia: A Randomized Controlled Trial.

J Clin Psychiatry

January 2025

Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, and Department of Psychiatry, New York University School of Medicine, New York, New York.

There are few established treatments for negative symptoms in schizophrenia, which persist in many patients after positive symptoms are reduced. Oxidative stress, inflammation, and epigenetic modifications involving histone deacetylase (HDAC) have been implicated in the pathophysiology of schizophrenia. Sulforaphane has antioxidant properties and is an HDAC inhibitor.

View Article and Find Full Text PDF

Synephrine, a protoalkaloid found in Citrus aurantium (CA) peels, exerts lipolytic, anti-inflammatory, and vasoconstrictive effects; however, its antioxidant activity remains unclear. In this study, electron spin resonance spectroscopy revealed that synephrine scavenged both hydroxyl and superoxide anion radicals. Several external stimuli, such as HO, X-rays, and ultraviolet (UV) radiation, cause stress-induced premature senescence (SIPS).

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!