Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The three mechanisms known to be responsible for the failure of uncemented femoral stems in primary total hip arthroplasty (THA) are the stress shielding, excessive bone-implant interface stress, and excessive initial micromotion. Since implant designers usually have to sacrifice two mechanisms to improve the other one, the aim of this study was to assess which of them plays a more important role in the failure of uncemented stems. Two hip implant stems which are widely used in the primary THA and their mid-term clinical outcomes are available, were selected. Then, the amount of the three failure mechanisms created by each stem during the normal walking gait cycle was determined for a 70 kg female patient using the finite element method. The results indicated that the stem with better clinical outcome induced an average of 36.6% less stress shielding in the proximal regions of femur bone compared with the other stem. However, the maximum bone-implant interface stress and maximum initial micromotion were, respectively, 30 and 155% higher for the stem with better clinical outcomes. It was therefore concluded that the stress shielding has a more significant impact on the mid-term life of uncemented stems. However, care must be taken to ensure that the other two failure mechanisms do not exceed a certain threshold. It was also observed that the thinner and shorter stem created a smaller amount of stress shielding in the femur bone. The outcomes of this study can be used to design new hip implant stems that can potentially last longer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2023.2301676 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!