Bifunctional tissue engineering constructs promoting osteogenesis and angiogenesis are essential for bone regeneration. Metal ion-incorporated scaffolds and fibrin encapsulation attract much attention due to low cost, nontoxicity, and tunable control over ion and growth factor release. Herein, we investigated the effect of Cu.nHA/Cs/Gel scaffold and fibrin encapsulation on osteogenic and angiogenic differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) in vitro and in vivo. Cu-laden scaffolds were synthesized using salt leaching/freeze drying and were characterized using standard techniques. WJMSCs were isolated from the human umbilical cord and characterized. WJMSCs with or without encapsulating in fibrin were seeded onto scaffolds, followed by differentiating into the osteogenic lineage for 7 and 21 days. Osteogenic and angiogenic differentiation were evaluated using real-time polymerase chain reaction, western blot, and Alizarin red staining. Then, scaffolds were implanted into critical-sized calvarial bone defects in rats and histological assessments were performed using hematoxylin/eosin, Masson's trichrome, and CD31 immunohistochemical staining at 4 and 12 weeks. The scaffolds had good physicochemical and biological characteristics suitable for cell attachment and growth. Cu and fibrin increased the expression of ALP, RUNX2, OCN, COLI, VEGF, and HIF1α in differentiated WJMSCs. Implanted scaffolds were also biocompatible and were integrated well with the host tissue. Increased collagen condensation, mineralization, and blood vessel formation were observed in Cu-laden scaffolds. The fibrin-encapsulated groups showed the highest collagen and cell densities, immune cell infiltration, and bone trabeculae. CD31-positive cell population increased with fibrin encapsulation and seeding onto Cu-laden scaffolds. Adding Cu to scaffolds and encapsulating cells in fibrin are promising methods that guide osteogenesis and angiogenesis cellular signaling, leading to better bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35362 | DOI Listing |
J Mater Sci Mater Med
January 2025
Department of Anatomy, Histology, Embriology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia.
Tooth extraction is physiologically followed by resorption of alveolar bone. Surgical method which aims to minimise this reduction in alveolar bone with a goal to provide enough bone volume for dental implant insertion is called socket preservation. The purpose of this article was to asses clinical, histomorphometric and histological results of socket preservation conducted with natural bovine bone substitute with hyaluronate.
View Article and Find Full Text PDFJ Mater Sci Mater Med
January 2025
Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan.
Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.
View Article and Find Full Text PDFJ Conserv Dent Endod
November 2024
Department of Conservative Dentistry and Endodontics, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India.
Apical fenestration is a defect in the alveolar cortical plate, exposing the root without involving the alveolar bone margin, often linked to trauma, periodontal disease, and orthodontic treatment, leading to symptoms such as pain and abscesses from endodontic infections. This case report describes managing a mucosal fenestration in an endodontically treated tooth with nonsurgical root canal therapy and periodontal surgery. A 44-year-old male presented with mucosal fenestration and pain in the upper front jaw due to trauma and an inadequately treated root canal.
View Article and Find Full Text PDFBiomedicine (Taipei)
December 2024
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
Introduction: In recent years, significant progress has been made in regenerative medicine, specifically in using mesenchymal stem cells (MSCs) due to their regenerative and differentiating abilities. An exciting development in this area is the utilization of exosomes derived from MSCs, which have shown promise in tissue restoration, immune system modulation, and cancer treatment.
Objectives: This study aims to analyze global research trends and the academic impact of MSCs-derived exosomes from 2014 to 2023, providing a comprehensive overview of this emerging field.
Regen Biomater
November 2024
Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.
Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!