In the field of bone tissue engineering, silicon (Si) has been found as an essential element for bone growth. However, the use of silicon in bioceramics microspheres remains limited. In this work, different weight percentages (0.8, 1.6, and 2.4 wt %) of silicon was incorporated into hydroxyapatite and fabricated into microspheres. 2.4 wt % of Si incorporated into HAp microspheres (2.4 SiHAp) were found to enhance functional properties of the microspheres which resulted in improved cell viability of human mesenchymal stem cells (hMSCs), demonstrating rapid cell proliferation rates resulting in high cell density accumulated on the surface of the microspheres which in turn permitted better hMSCs differentiation into osteoblasts when validated by bone marker assays (Type I collagen, alkaline phosphatase, osteocalcin, and osteopontin) compared to apatite microspheres of lower wt % of Si incorporated and non-substituted HAp (2.4 SiHAp >1.6 SiHAp >0.8 SiHAp > HAp). SEM images displayed the densest cell population on 2.4 SiHAp surfaces with the greatest degree of cell stretching and bridging between neighboring microspheres. Incorporation of silicon into apatite microspheres was found to accelerate the rate and number of apatite nucleation sites formed when subjected to physiological conditions improving the interface between the microsphere scaffolds and bone forming cells, facilitating better adhesion and proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35349DOI Listing

Publication Analysis

Top Keywords

apatite microspheres
12
microspheres
9
bone tissue
8
tissue engineering
8
bone
5
cell
5
characterization in-vitro
4
in-vitro assessment
4
assessment silicon-based
4
apatite
4

Similar Publications

Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated.

View Article and Find Full Text PDF

Effect of sodium L-lactate on bioactive properties of chitosan-hydroxyapatite/polycaprolactone conduits for peripheral nerve tissue engineering.

Int J Biol Macromol

November 2024

University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrates Zoology and Hydrobiology, Banacha 12/16, 90-324 Lodz, Poland. Electronic address:

Biomaterials and synthetic polymers have been widely used to replicate the regenerative microenvironment of the peripheral nervous system. Chitosan-based conduits have shown promise in the regeneration of nerve injuries. However, to mimic the regenerative microenvironment, the scaffold structure should possess bioactive properties.

View Article and Find Full Text PDF
Article Synopsis
  • * They prepared drug-loaded microspheres using an emulsion ultrasonic method and characterized them through various techniques, revealing a strong, porous structure and effective drug loading rates.
  • * The results demonstrated that the combined release of BMP-2 and VAN promoted osteogenic differentiation in stem cells, helping in the formation of new bone tissue.
View Article and Find Full Text PDF

The development of intelligent responsive reactive packaging materials with natural polymers shows excellent potential in food preservation. In this study, eco-friendly, pH-sensitive sodium alginate (SA)/hydroxyapatite (HA)/quaternary ammonium chitosan (HACC) composite microspheres loading curcumin (CUR) with excellent antibacterial and antioxidant activities were successfully synthesized. Scanning electron microscopy (SEM) and nitrogen adsorption/desorption tests indicated that the doping of HA substantially increased the specific surface area and pore volume of the microspheres.

View Article and Find Full Text PDF

Despite the numerous studies on biocompatibility with nano-biomaterials, the biological effects of strontium-substituted HA nanoparticles (nSrHA) need to be better understood. So, we conducted an embryotoxicity test using zebrafish (Danio rerio) according to the OECD 236 guideline, a model that represents a viable alternative that bridges the gap between in vitro and mammalian models. Zebrafish embryos were exposed for 120 h to microspheres containing nSrHA nanoparticles with low and high crystallinity, synthesized at temperatures of 5°C (nSrHA5) and 90°C (nSrHA90).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!