Solvent-Triggered, Ultra-Adhesive, Conductive, and Biocompatible Transition Gels for Wearable Devices.

Small

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Published: June 2024

The development of robust adhesive, conductive, and flexible materials has garnered significant attention in the realm of human-machine interface and electronic devices. Conventional preparation methods to achieve these exceptional properties rely on incorporating highly polar raw materials, multiple components, or solvents. However, the overexposure of functional groups and the inherent toxicity of organic solvents often render gels non-stick or potentially biocompatible making them unsuitable for human-contact devices. In this study, a straightforward three-step strategy is devised for preparing responsive adhesive gels without complex components. Structurally conductive poly(N-(2-hydroxyethyl)-acrylamide-co-p-styrene sulfonate hydrate) (PHEAA-NaSS) gels are synthesized by integrating ionic and hydrophilic networks with distinct solvent effects. Initially, the in-suit formed PHEAA-NaSS networks are activated by dimethyl sulfoxide, which substantially increases intramolecular hydrogen bonding and enhances the matrix stretchability and interfacial adhesion. Subsequently, ethanol exchange reduced solvent impact and led to a compact network that limited surface exposure of ionic and hydrophilic groups, resulting in nonstick, robust for convenient storage. Finally, upon contacting with water, the network demonstrates rehydration, resulting in favorable adhesion, biocompatibility, and conductivity. The proposed PHEAA-NaSS/W gels can stably and reliably capture joint motion and electrophysiological signals. Furthermore, this uncomplicated gel preparation method is also applicable to other electrolyte monomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202310731DOI Listing

Publication Analysis

Top Keywords

ionic hydrophilic
8
gels
5
solvent-triggered ultra-adhesive
4
ultra-adhesive conductive
4
conductive biocompatible
4
biocompatible transition
4
transition gels
4
gels wearable
4
wearable devices
4
devices development
4

Similar Publications

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis.

Membranes (Basel)

December 2024

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.

View Article and Find Full Text PDF

Self-assembling cyclic peptide nanotubes are fascinating supramolecular systems with promising potential for various applications, such as drug delivery, transmembrane ionic channels, and artificial light-harvesting systems. In this study, we present novel pH-responsive nanotubes based on asymmetric cyclic peptide-polymer conjugates. The pH response is introduced by a tertiary amine-based polymer, poly(dimethylamino ethyl methacrylate) (pDMAEMA) or poly(diethylamino ethyl methacrylate) (pDEAEMA) which is protonated at low pH.

View Article and Find Full Text PDF

Graphene or MoS nanopores: pore adhesion and protein linearization.

Nanoscale

December 2024

Computational Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.

Nanopores drilled in materials can electrophoretically drive charged biomolecules to enable their detection. Here, we explore and compare two-dimensional nanopores, graphene and MoS, in order to unravel their advantages and disadvantages with regard to protein detection. We tuned the protein translocation and its dynamics by the choice and concentration of the surrounding solvent.

View Article and Find Full Text PDF

Poly(2-Hydroxymethyl-2-oxazoline) as Super-hydrophilic Antifouling Polymer.

Angew Chem Int Ed Engl

December 2024

Ghent University, Department of Organic CHemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Non-ionic "super-hydrophilic" polymers generally possess non-fouling characteristics and can suppress non-specific interactions with blood proteins. Here, we revitalized a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline and explored the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!