Purpose: To mitigate inhomogeneity at 7T for multi-channel transmit arrays using unsupervised deep learning with convolutional neural networks (CNNs).
Methods: Deep learning parallel transmit (pTx) pulse design has received attention, but such methods have relied on supervised training and did not use CNNs for multi-channel maps. In this work, we introduce an alternative approach that facilitates the use of CNNs with multi-channel maps while performing unsupervised training. The multi-channel maps are concatenated along the spatial dimension to enable shift-equivariant processing amenable to CNNs. Training is performed in an unsupervised manner using a physics-driven loss function that minimizes the discrepancy of the Bloch simulation with the target magnetization, which eliminates the calculation of reference transmit RF weights. The training database comprises 3824 2D sagittal, multi-channel maps of the healthy human brain from 143 subjects. data were acquired at 7T using an 8Tx/32Rx head coil. The proposed method is compared to the unregularized magnitude least-squares (MLS) solution for the target magnetization in static pTx design.
Results: The proposed method outperformed the unregularized MLS solution for RMS error and coefficient-of-variation and had comparable energy consumption. Additionally, the proposed method did not show local phase singularities leading to distinct holes in the resulting magnetization unlike the unregularized MLS solution.
Conclusion: Proposed unsupervised deep learning with CNNs performs better than unregularized MLS in static pTx for speed and robustness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997461 | PMC |
http://dx.doi.org/10.1002/mrm.30014 | DOI Listing |
Acta Radiol
January 2025
Department of Medical Imaging, Dalin Tzu-Chi Hospital, Chiayi, Taiwan.
Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.
Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.
Material And Methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI).
Clin Implant Dent Relat Res
February 2025
SEMRUK Technology Inc., Cumhuriyet Teknokent, Sivas, Turkiye.
Objectives: This study aimed to develop an artificial intelligence (AI)-based deep learning model for the detection and numbering of dental implants in panoramic radiographs. The novelty of this model lies in its ability to both detect and number implants, offering improvements in clinical decision support for dental implantology.
Materials And Methods: A retrospective dataset of 32 585 panoramic radiographs, collected from patients at Sivas Cumhuriyet University between 2014 and 2024, was utilized.
Bioinform Adv
November 2024
Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
Summary: Protein structure prediction aims to infer a protein's three-dimensional (3D) structure from its amino acid sequence. Protein structure is pivotal for elucidating protein functions, interactions, and driving biotechnological innovation. The deep learning model AlphaFold2, has revolutionized this field by leveraging phylogenetic information from multiple sequence alignments (MSAs) to achieve remarkable accuracy in protein structure prediction.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
Department of Cardiovascular Surgery of Zhongshan Hospital, Fudan University, Shanghai 200032, China.
Aims: Accurate heart function estimation is vital for detecting and monitoring cardiovascular diseases. While two-dimensional echocardiography (2DE) is widely accessible and used, it requires specialized training, is prone to inter-observer variability, and lacks comprehensive three-dimensional (3D) information. We introduce CardiacField, a computational echocardiography system using a 2DE probe for precise, automated left ventricular (LV) and right ventricular (RV) ejection fraction (EF) estimations, which is especially easy to use for non-cardiovascular healthcare practitioners.
View Article and Find Full Text PDFEur Heart J Digit Health
January 2025
School of Life Course & Population Sciences, King's College London, SE1 1UL London, UK.
Cardiovascular disease (CVD) remains a major cause of mortality in the UK, prompting the need for improved risk predictive models for primary prevention. Machine learning (ML) models utilizing electronic health records (EHRs) offer potential enhancements over traditional risk scores like QRISK3 and ASCVD. To systematically evaluate and compare the efficacy of ML models against conventional CVD risk prediction algorithms using EHR data for medium to long-term (5-10 years) CVD risk prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!