The evolution of parasite resistance to antiparasitic agents has become a serious health issue indicating a critical and pressing need to develop new therapeutics that can conquer drug resistance. Nanoparticles are novel, promising emerging drug carriers that have demonstrated efficiency in treating many parasitic diseases. Lately, attention has been drawn to a broad-spectrum nanoparticle capable of converting absorbed light into heat via the photothermal effect phenomenon. The present study is the first to assess the effect of silver nanoparticles (Ag NPs) and iron oxide nanoparticles (FeO NPs) as sole agents and with the combined action of the light-emitting diode (LED) on Blastocystis hominins (B. hominis) in vitro. Initially, the aqueous synthesized nanoparticles were characterized by UV-Vis spectroscopy, zeta potential, and transmission electron microscopy (TEM). The anti-blastocyst efficiency of these NPs was tested separately in dark conditions. As these NPs have a wide absorption spectrum in the visible regions, they were also excited by a continuous wave LED of wavelength band (400-700 nm) to test the photothermal effect. The sensitivity of B. hominis cysts was evaluated using scanning laser confocal microscopy whereas the live and dead cells were accurately segmented based on superpixels and the k-mean clustering algorithm. Our findings showed that this excitation led to hyperthermia that induced a significant reduction in the number of cysts treated with photothermally active NPs. The results of this study elucidate the potential role of photothermally active NPs as an effective anti-blastocystis agent. By using this approach, new therapeutic antiparasitic agents can be developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800310 | PMC |
http://dx.doi.org/10.1007/s10103-024-03984-6 | DOI Listing |
Mol Pharm
January 2025
Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
The morbidity and mortality rates of hepatocellular carcinoma (HCC) are high and continue to increase. The antitumor effects of single therapies are limited because of tumor heterogeneity and drug resistance, and the lack of real-time monitoring of tumor progression during the treatment process leads to poor therapeutic outcomes. Therefore, novel nanodelivery platforms combining tumor therapy and diagnosis have garnered extensive attention.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
Magnetic chromatography was exploited to fractionate suspensions of magnetoliposomes (SML: lumen-free lipid-encapsulated clusters of multiple magnetic iron-oxide nanoparticles) improving their colloidal properties and relaxivity (magnetic resonance image contrast capability). Fractionation (i) removed sub-populations that do not contribute to the MRI response, and thus (ii) enabled evaluation of the size-dependence of relaxivity for the MRI-active part, which was surprisingly weak in the 55-90 nm range. MC was therefore implemented for processing multiple PEGylated SML types having average sizes ranging from 85 to 105 nm, which were then shown to have strongly size-dependent uptake in an pancreatic cancer model.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:
Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!