Frailty is classically associated with advanced age but is also an important predictor of clinical outcomes in comparatively young adults with cirrhosis. We examined the association of biological aging with frailty and post-transplant outcomes in a pilot of adults with cirrhosis undergoing liver transplantation (LT). Frailty was measured via the Liver Frailty Index (LFI). The primary epigenetic clock DNA methylation (DNAm) PhenoAge was calculated from banked peripheral blood mononuclear cells; we secondarily explored two first-generation clocks (Hannum; Horvath) and two additional second-generation clocks (GrimAge; GrimAge2). Twelve adults were included: seven frail (LFI ≥ 4.4, mean age 55 years) and five robust (LFI < 3.2, mean age 55 years). Mean PhenoAge age acceleration (AgeAccel) was + 2.5 years (P = 0.23) for frail versus robust subjects. Mean PhenoAge AgeAccel was + 2.7 years (P = 0.19) for subjects who were readmitted or died within 30 days of discharge post-LT versus those without this outcome. When compared with first-generation clocks, the second-generation clocks demonstrated greater average AgeAccel for subjects with frailty or poor post-LT outcomes. Measuring biological age using DNAm-derived epigenetic clocks is feasible in adults undergoing LT. While frail and robust subjects had the same average chronological age, average biological age as measured by second-generation epigenetic clocks tended to be accelerated among those who were frail or experienced a poor post-LT outcome. These results suggest that frailty in these relatively young subjects with cirrhosis may involve similar aging mechanisms as frailty classically observed in chronologically older adults and warrant validation in a larger cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009173 | PMC |
http://dx.doi.org/10.1007/s11357-024-01076-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!