AI Article Synopsis

  • A 75-year-old man experienced sudden weakness in all limbs (tetraparesis) after having chest pain, but initial MRI showed no issues.
  • Following an improvement in his motor skills, persistent weakness was noted in muscles controlled by the C5 nerve root, along with sensory and autonomic issues.
  • An MRI taken eight days later confirmed a spinal cord infarction in the right anterior horn at C3-C4, indicating that symptoms can resemble radiculopathy during spinal cord infarctions.

Article Abstract

A 75-year-old man developed sudden-onset tetraparesis preceded by chest pain. MRI of the cervical spine on the day of onset showed no abnormalities. Although his motor symptoms improved gradually, the weakness of the muscles innervated by the C5 nerve root persisted. Sensory and autonomic deficits were detected on an additional neurological examination, and follow-up MRI eight days after onset revealed spinal cord infarction at the right anterior horn at C3-C4. This case suggests that motor symptoms mimicking a radiculopathy could be present during the course of spinal cord infarction.

Download full-text PDF

Source
http://dx.doi.org/10.5692/clinicalneurol.cn-001916DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord infarction
12
motor symptoms
8
case spinal
4
infarction presenting
4
presenting unilateral
4
unilateral palsy
4
palsy 75-year-old
4
75-year-old man
4
man developed
4

Similar Publications

Background: Awareness of the characteristics of glial fibrillary acidic protein autoantibody (GFAP-IgG) associated myelitis facilitates early diagnosis and treatment. We explored features in GFAP-IgG myelitis and compared them with those in myelitis associated with aquaporin-4 IgG (AQP4-IgG) and myelin oligodendrocyte glycoprotein IgG (MOG-IgG).

Methods: We retrospectively reviewed data from patients with GFAP-IgG myelitis at the First Affiliated Hospital of Zhengzhou University and Henan Children's Hospital from May 2018 to May 2023.

View Article and Find Full Text PDF

Crisdesalazine alleviates inflammation in an experimental autoimmune encephalomyelitis multiple sclerosis mouse model by regulating the immune system.

BMC Neurosci

January 2025

Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.

Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.

View Article and Find Full Text PDF

Altered 3D genome reorganization mediates precocious myeloid differentiation of aged hematopoietic stem cells in inflammation.

Sci China Life Sci

December 2024

Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.

Inflammation is a driving force of hematopoietic stem cells (HSCs) aging, causing irreversible exhaustion of functional HSCs. However, the underlying mechanism of HSCs erosion by inflammatory insult remains poorly understood. Here, we find that transient LPS exposure primes aged HSCs to undergo accelerated differentiation at the expense of self-renewal, leading to depletion of HSCs.

View Article and Find Full Text PDF

Study Design: Experimental Animal Study.

Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.

Setting: University of Florida laboratory in Gainesville, USA.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!