Antibiotics, natural organic matter, and pesticides are detected in the ecosystem's domestic water, surface water, and groundwater and are largely applied in pharmaceuticals and agriculture. Polymeric membranes are effectively remove the various pollutants in the water bodies, but fouling is one of the major limitations of commercial membranes. Herein, we modified the polymeric membrane surface with inorganic photocatalytic nanoparticles. In this work, the hydrothermal method is used for the synthesis of BiWO nanoparticles and as-synthesized nanoparticles grafted onto the various polymeric membranes, including polyetherimide (PEI), cellulose acetate (CA), polyvinylidene fluoride (PVDF), and polysulfone (PSF). The functional group studies confirmed the existence of nanoparticles and hydroxyl groups on the hybrid membrane. Further, finger-like voids, top-surface morphology, and roughness on the membrane surface were validated via Field Emission Scanning Electron Microscopy (FESEM) and Atomic force microscopy (AFM), respectively. The significant rejection of tetracycline, humic acid, and fulvic acid + atrazine was noted with the synthesized membranes in the following order: PVDF (81.1%, 78.8%, 80.6%) > CA (70.1%, 69.3%, 71.7%) > PSF (72.5%, 73.6%, 67.1%) > PEI (75.9%, 65.5%, 63.7%). The photodegradation efficiency of hybrid membranes against tetracycline, humic acid, and fulvic acid + atrazine was observed in the order: PEI (28.5%, 25.8%, 30.2%) < CA (46.5%, 42.4%, 40.5%) < PSF (46.9%, 37.7%, 44.7%) < PVDF (67.7%, 62.1%, 64.3%). These membranes exhibit an outstanding permeate flux recovery ratio to the neat membrane. Therefore, the grafting of BiWO nanoparticles creates a potential bonding with PVDF membranes than other polymeric membranes, thus exhibiting an outstanding rejection than hybrid and neat membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141214DOI Listing

Publication Analysis

Top Keywords

biwo nanoparticles
8
polymeric membranes
8
membrane surface
8
tetracycline humic
8
humic acid
8
acid fulvic
8
fulvic acid + atrazine
8
membranes
5
nanoparticles anchored
4
membrane
4

Similar Publications

The radioresistance of tumor cells is considered to be an Achilles' heel of cancer radiotherapy. Thus, an effective and biosafe radiosensitizer is highly desired but hitherto remains a big challenge. With the rapid progress of nanomedicine, multifunctional inorganic nanoradiosensitizers offer a new route to overcome the radioresistance and enhance the efficacy of radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!