5-HT-treated mouse B cells alleviate ulcerative colitis via RIPK1: Insights from proteomic and phosphoproteomic analyses.

J Proteomics

Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China. Electronic address:

Published: March 2024

5-hydroxytryptamine (5-HT) exerts various physiological effects on the intestine through different signaling pathways and molecular transmission mechanisms, including pro- and anti-inflammatory effects. Adoptive transfer of regulatory B cells (Bregs) into colitis mice has exhibited significant therapeutic benefits. We aimed to elucidate the mechanism through which 5-HT-treated B cells alleviate ulcerative colitis. To this end, we analyzed the proteomic and phosphoproteomic profiles of 5-HT-stimulated B cells from naïve mice. We identified 3124 phosphorylation sites in proteins via tandem mass tagging and found 110 differential peptides after protein phosphorylation. Furthermore, we obtained three differential proteins, RIPK1, ATXN2l, and Q8C5K5 through integration of both proteomic datasets. We discovered and validated that 5-HT binds to 5-HTR and increases the expression of RIPK1 in B cells. We propose a theoretical and experimental basis for further research on the RIPK1 signaling pathway, kinase prediction, and phosphorylation sites in ulcerative colitis. SIGNIFICANCE: Some researchers demonstrated that 5-HT can effectively suppress colitis through a variety of molecular mechanisms. Our study discovered and consistently validated the 5-HT/5-HT7R/RIPK1 pathway, further clarifying the molecular mechanism through which 5-HT stimulates B cells to alleviate intestinal inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2024.105085DOI Listing

Publication Analysis

Top Keywords

cells alleviate
12
ulcerative colitis
12
alleviate ulcerative
8
proteomic phosphoproteomic
8
phosphorylation sites
8
cells
6
colitis
5
5-ht-treated mouse
4
mouse cells
4
ripk1
4

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.

View Article and Find Full Text PDF

Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!