A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2024.109383DOI Listing

Publication Analysis

Top Keywords

red tilapia
20
chitosan polymer-based
20
immersion vaccination
16
polymer-based nanovaccine
16
serum mucus
12
vaccination chitosan
8
aeromonas veronii
8
delivery system
8
immersion challenge
8
specific igm
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!