AI Article Synopsis

Article Abstract

Oxidative stress is the primary cause of ischaemic stroke and is closely related to circadian rhythm. However, the mechanism by which circadian rhythm regulates oxidative stress in ischaemic stroke remains elusive. The Silent Information Regulator 1 (SIRT1) controls circadian rhythm by activating the transcription of the circadian clock core protein Basic Helix-Loop-Helix ARNT Like 1 (BMAL1) through deacetylation. Studies have shown that the SIRT1-BMAL1 pathway can regulate oxidative stress. To investigate its correlation with oxidative stress, we examined the expression levels and influencing factors of SIRT1-BMAL1 at different times in ischaemic stroke patients and analyzed their clinical indexes, oxidative stress, and inflammatory factor indicators. The expression levels of oxidative stress and inflammatory factor indicators, including malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-6 (IL-6), and tumor necrosis factor-a (TNF-α), SIRT1, and BMAL1, were detected in ischaemic stroke patients within 4.5 h of onset and in non-stroke patients. Patients were divided into four subgroups based on onset time: subgroup 1 (0:00-05:59); subgroup 2 (06:00-11:59); subgroup 3 (12:00-17: 59); and subgroup 4 (18:00-23:59). Our results showed higher MDA, IL-6, and TNF-α levels, and lower SOD, SIRT1, and BMAL1 levels in ischaemic stroke patients compared to control patients (P < 0.05). Among the four subgroups, the content of MDA, IL-6, and TNF-α was highest in patients with ischaemic stroke onset from subgroup 2 (06:00-11:59), while the expression levels of SOD, BMAL1, and SIRT1 were lowest in patients with ischaemic stroke in subgroup 2. Additionally, myeloperoxidase (MPO) reached the highest value showing the same trends consistent with MDA, IL-6, and TNF-ɑ and opposite trends consistent with SOD, BMAL1, and SIRT1. However, triglycerides (TGs), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), immediate blood glucose, immediate diastolic blood pressure, immediate systolic blood pressure, and homocysteine (HCY) did not show any statistically significant circadian rhythm changes (P > 0.05). Our findings suggest that the SIRT1-BMAL1 pathway may be involved in early oxidative stress in ischaemic stroke, which may be related to MPO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799848PMC
http://dx.doi.org/10.1038/s41598-024-52120-5DOI Listing

Publication Analysis

Top Keywords

oxidative stress
32
ischaemic stroke
28
sirt1-bmal1 pathway
12
circadian rhythm
12
stroke patients
12
oxidative
8
stress
8
stress ischaemic
8
expression levels
8
stress inflammatory
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!