To investigate the solvent effect on the detection of peptides and proteins, nanoelectrospray mass spectra were measured for mixtures of 1 % acetic acid and 5 × 10 M gramicidin S (G), ubiquitin (U), and cytochrome c (C) in water (W), methanol (MeOH), 1-propanol (1-PrOH), acetonitrile (AcN), and 2-propanol (2-PrOH). Although doubly protonated G (G2+) and multiply protonated U (Un+) and C (Cn+) were readily detected with a wide range of mixing ratios of W solutions for MeOH, 1-PrOH, and AcN, Cn+ was totally suppressed for the solutions with mixing ratios (v/v) of W/2-PrOH (50/50) and (70/30). However, denatured Cn+ started to be detected with W/2-PrOH (90/10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8). At the mixing ratio of W/2-PrOH (95/5), native Cn+ (n = 7-10) together with Gn+ (n = 1, 2) and native Un+ (n = 6-8) were detected with high ion intensities. The use of W/2-PrOH (95/5) is profitable because it enables the detection of native proteins with high detection sensitivities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2024.115461DOI Listing

Publication Analysis

Top Keywords

solvent detection
8
detection peptides
8
peptides proteins
8
proteins nanoelectrospray
8
mixing ratios
8
gn+ n = 1
8
n = 1 native
8
native un+
8
un+ n = 6-8
8
w/2-proh 95/5
8

Similar Publications

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Nitrogen-doped waste biomass-derived carbon dots as fluorescent sensors for economical, green, rapid and sensitive detection of resveratrol in foods.

Food Chem

January 2025

School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:

Resveratrol (Res), a natural antioxidant widely found in fruits, plays a crucial role in preventing various diseases. However, traditional detection methods usually rely on large amounts of toxic solvents, leading to high costs and potential health risks to researchers. In this work, an economical, green, rapid, and sensitive method for Res detection was developed using banana peel-derived nitrogen-doped carbon dots (BP-N-CDs) as fluorescent sensors.

View Article and Find Full Text PDF

Green extraction and IC analysis of trace impurities in TATB through deep eutectic solvents.

J Chromatogr A

January 2025

School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, PR China. Electronic address:

1,3,5-trinamino-2,4,6-trinitrobenzene (TATB) as an important insensitive high explosive has excellent safety performance due to strong hydrogen bonds. Ionic impurities including sulfate ions (SO), nitrate ions (NO) and chloride ions (Cl) formed during the preparation of TATB have negative effects on TATB-based explosives. However, strong hydrogen bonds result in extremely low solubility of TATB in traditional solvents, which poses a huge obstacle to extract and detect the impurities in TATB for quality control.

View Article and Find Full Text PDF

Bioreceptors are increasingly popular for selective aroma sensing but face challenges with receptor separation and cell culture. Here, we developed a bioreceptor-free electronic nose employing Mn-metal organic framework (Mn-MOF) nanonets as sensing materials for rapid electrochemical quantification of (E)-2-hexenal, a characteristic aroma commonly found in various foods. A simple solvent-mediated morphology engineering technology was proposed to create Mn-MOF structures, including nanoparticles, nanowires, and nanonets.

View Article and Find Full Text PDF

Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!