Mycotoxins such as gliotoxin (GTX) and ochratoxin A (OTA) are secondary metabolites of Aspergillus and Penicillum found in food and feed. Both mycotoxins have shown to exert a detrimental effect on neuronal activity. The following study was carried out to elucidate the mechanisms by which GTX and OTA exert their toxicity. Non-differentiated SH-SY5Y neuronal-like cells were treated with GTX, OTA and their combinations to assess their cytotoxic effect using the MTT assay during 24, 48 and 72 h of exposure. Based on the results of the cytotoxic assays, cell cycle proliferation and immunological mediators were measured by determining the production of IL-6 and TNF-α using flow cytometry and ELISA, respectively. The IC values obtained were 1.24 and 1.35 µM when SH-SY5Y cells were treated with GTX at 48 h and 72 h, respectively. IC values of 8.25, 5.49 and 4.5 µM were obtained for OTA treatment at 24 h, 48 h and 72 h, respectively. The SubG0 phase increased in both treatments at 24 and 48 h. On the other hand, IL-6 and TNF-α production was increased in all mycotoxin treatments studied and was more pronounced for [GTX + OTA] after 48 h exposure. The additive and synergistic effect observed by the isobologram analysis between GTX and OTA resulted to a higher cytotoxicity which can be explained by the increased production of IL-6 and TNF-α inflammatory mediators that play an important role in the toxicity mechanism of these mycotoxins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2024.01.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!