A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon quantum dots assisted BiFeO@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity. | LitMetric

Carbon quantum dots assisted BiFeO@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity.

Sci Total Environ

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Shenyang, Liaoning 110003, China; Key Lab of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:

Published: March 2024

A novel S-scheme heterojunction photocatalyst carbon quantum dots (CQDs)/BiFeO/BiOBr (CBB) was synthesized via a facile hydrothermal method, which was highly effective in activating peroxymonosulfate (PMS) to photodegrade imidacloprid (IMD) (one of the typical neonicotinoid insecticides (NEOs)) under visible light irradiation. Based on the physicochemical and photoelectrochemical analysis, the super photocatalytic performance of the CBB photocatalyst was contributed to the enhanced separation and transfer of photogenerated electrons (e) and holes (h), the activation of PMS by reactive species, and the wider light absorption range induced by CQDs. Moreover, the intermediate products and possible photodegradation pathways of IMD were confirmed through high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) detection and density functional theory (DFT) calculations. Although the photodegradation of IMD in the CBB/PMS/Vis system can be affected by the water quality parameters (i.e., acid group anions, pH, and the presence of humic acid (HA)), the synthesized CBB photocatalyst showed excellent photocatalytic performance in multiple natural water samples. This study provides a new idea to construct an effective and efficient heterojunction photocatalyst, which may have great advantages in photocatalytic degradation of NEOs and possibly other emerging contaminants in the aquatic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170029DOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
quantum dots
8
s-scheme heterojunction
8
photocatalytic degradation
8
visible light
8
heterojunction photocatalyst
8
photocatalytic performance
8
cbb photocatalyst
8
dots assisted
4
assisted bifeo@biobr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!