Here, we propose two-parameter penalized attributive analysis, PPAA-U, a novel heuristic tool for selecting the best upgrading conditions (BUCs) for soil washing. Given a multi-component feed and a specific set of operating conditions, PPAA-U generates a quality index based on how well recoveries for key components are maximized while minimizing the yield. We demonstrate, through the calculation of families of curves, that this quality index is related linearly to recovery and to the inverse of the yield, meaning that reducing yield values is more important than maximizing recovery. To evaluate our method, electrostatic separation at 12 different voltages was carried out on soil samples from an ex-industrial site in Spain. Values of recovery, yield, and grade were analyzed using basic attributive analysis and PPAA-U with and without target-to-distance correction. Both methods identified the same optimal separation voltage, and the power of PPAA-U to correct for high variation in yields and recoveries was observed as a divergence between results produced by each method at low voltages where variation in these values was greatest. PPAA-U thus offers a convenient tool for soil washing optimization, and we suggest that it could be applied successfully to other industrial processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133529 | DOI Listing |
J Environ Manage
January 2025
Department of Fashion Technology, PSG College of Technology, Coimbatore, 641004, India.
Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.
View Article and Find Full Text PDFEnviron Technol
January 2025
Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.
View Article and Find Full Text PDFJ Chromatogr A
February 2025
Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:
The creation of defects in crystalline structures can tune metal-organic frameworks (MOFs) properties, such as improving their adsorptive and catalytic performance with producing more porosity and active sites. In this work, the bimetallic UiO-66 containing Zn and Zr was prepared. And then UiO-66 with missing cluster defects (UiO-66-1/3) were obtained by acid washing to remove the Zn nodes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.
Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!