Abnormal stability of spontaneous neuronal activity as a predictor of diagnosis conversion from major depressive disorder to bipolar disorder.

J Psychiatr Res

School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China. Electronic address:

Published: March 2024

Objective: Bipolar disorder (BD) is often misdiagnosed as major depressive disorder (MDD) in the early stage, which may lead to inappropriate treatment. This study aimed to characterize the alterations of spontaneous neuronal activity in patients with depressive episodes whose diagnosis transferred from MDD to BD.

Methods: 532 patients with MDD and 132 healthy controls (HCs) were recruited over 10 years. During the follow-up period, 75 participants with MDD transferred to BD (tBD), and 157 participants remained with the diagnosis of unipolar depression (UD). After excluding participants with poor image quality and excessive head movement, 68 participants with the diagnosis of tBD, 150 participants with the diagnosis of UD, and 130 HCs were finally included in the analysis. The dynamic amplitude of low-frequency fluctuations (dALFF) of spontaneous neuronal activity was evaluated in tBD, UD and HC using functional magnetic resonance imaging at study inclusion. Receiver operating characteristic (ROC) analysis was performed to evaluate sensitivity and specificity of the conversion prediction from MDD to BD based on dALFF.

Results: Compared to HC, tBD exhibited elevated dALFF at left premotor cortex (PMC_L), right lateral temporal cortex (LTC_R) and right early auditory cortex (EAC_R), and UD showed reduced dALFF at PMC_L, left paracentral lobule (PCL_L), bilateral medial prefrontal cortex (mPFC), right orbital frontal cortex (OFC_R), right dorsolateral prefrontal cortex (DLPFC_R), right posterior cingulate cortex (PCC_R) and elevated dALFF at LTC_R. Furthermore, tBD exhibited elevated dALFF at PMC_L, PCL_L, bilateral mPFC, bilateral OFC, DLPFC_R, PCC_R and LTC_R than UD. In addition, ROC analysis based on dALFF in differential areas obtained an area under the curve (AUC) of 72.7%.

Conclusions: The study demonstrated the temporal dynamic abnormalities of tBD and UD in the critical regions of the somatomotor network (SMN), default mode network (DMN), and central executive network (CEN). The differential abnormal patterns of temporal dynamics between the two diseases have the potential to predict the diagnosis transition from MDD to BD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpsychires.2024.01.028DOI Listing

Publication Analysis

Top Keywords

spontaneous neuronal
12
neuronal activity
12
elevated dalff
12
major depressive
8
depressive disorder
8
bipolar disorder
8
participants diagnosis
8
roc analysis
8
tbd exhibited
8
exhibited elevated
8

Similar Publications

Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease.

View Article and Find Full Text PDF

Zebrafish models of genetic epilepsy benefit from the ability to assess disease-relevant knock-out alleles with numerous tools, including genetically encoded calcium indicators (GECIs) and hypopigmentation alleles to improve visualization. However, there may be unintended effects of these manipulations on the phenotypes under investigation. There is also debate regarding the use of stable loss-of-function (LoF) alleles in zebrafish, due to genetic compensation (GC).

View Article and Find Full Text PDF

Significance: Functional brain imaging experiments in awake animals require meticulous monitoring of animal behavior to screen for spontaneous behavioral events. Although these events occur naturally, they can alter cell signaling and hemodynamic activity in the brain and confound functional brain imaging measurements.

Aim: We developed a centralized, user-friendly, and stand-alone platform that includes an animal fixation frame, compact peripheral sensors, and a portable data acquisition system.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!