Infection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants. Transfectant clones expressed ACE2 protein at levels that were generally proportional to the number of ACE2 gene copies integrated in the cell genome, ranging up to approximately 50 times the level of ACE2 present of Vero-E6 cells. Cells overexpressing ACE2 were hypersensitive to infection by spike-pseudotyped vesicular stomatitis virus (VSV-S), and adsorption of VSV-S to these cells occurred at an accelerated rate compared to Vero-E6 cells. The transfectant cell clones described here therefore have favorable attributes as feedstocks for large-scale production of recombinant human ACE2 protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2024.109988 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!