Rare earth elements (REEs) have been used as tracers to reveal the hydrochemical sources and processes in groundwater systems that are usually modified by anthropogenic inputs. However, the REE behaviors in groundwater affected by mining activities have yet to be fully understood. In combination of REE geochemistry with general hydrochemical and isotopic (δH and δO) methods, this study investigated the concentration and fractionation of REEs in alkaline groundwater from two coal mines with similar aquifer lithology but different mining histories in the Northern Ordos Basin. One of the coal mines started mining in March 2009 (Ningtiaota coal mine, NTT), while the other started mining in December 2018 (Caojiatan coal mine, CJT). Results show that the primary hydrochemical type is HCO-Ca in NTT groundwater with pH value ranging between 7.68 and 8.60, while CJT groundwater was dominated by the HCO-Na type with higher pH of 9.09-10.00. The average values of ΣREEs were lower, and the NASC-normalized pattern reflected more intense fractionation in NTT groundwater than those in CJT groundwater. The evident differences are caused by the distinctions in water-rock interaction, complexation of inorganic species, and adsorption of REEs in NTT and CJT groundwater. Furthermore, these processes were closely related to the pH of groundwater that was different in two coal mines, which is likely linked to the different durations of coal mining activities that led to differences in development of rock fractures and pyrite oxidation. It is expected that REEs, combined with other indicators such as pH, can be used to trace and help better understand the hydrochemical changes in groundwater caused by mining.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-31958-2 | DOI Listing |
Sci Rep
January 2025
College of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, People's Republic of China.
The construction of a predictive model that accurately reflects the spontaneous combustion temperature of coal in goaf is fundamental to monitoring and early warning systems for thermodynamic disasters, including coal spontaneous combustion and gas explosions. In this paper, on the basis of programming temperature experiment and industrial analysis, 381 data sets of 9 coal types are established, and feature selection was executed through the utilization of the Pearson correlation coefficient, ultimately identifying O, CO, CO, CH, CH, CH/CH, CH/CH, CH/CH, CO/CO, and CO/O as input indicators for the prediction model. The chosen indicator data were divided into training and testing sets in a 4:1 ratio, the Particle Swarm Optimization (PSO) methodology was applied to optimize the parameters of the XGBoost regressor, and a universal PSO-XGBoost prediction model is proposed.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mining, Guizhou University, Guiyang, 550025, Guizhou, China.
In order to solve the problems of serious deformation and difficult support of roadway surrounding rock in the process of gob-side entry driving, taking 230,708 working face of Huopu Mine as the engineering background, the migration characteristics of overburden rock and the stress distribution of surrounding rock before and after roof cutting in the process of gob-side entry driving were studied by means of theoretical analysis, similar simulation test and field measurement. The results show that: ① the establishment of lateral suspension mechanical model analysis found that, with the increase of coal seam dip angle, the reduction of the coal pillar bearing capacity before and after cutting the top gradually decreases, the dip angle of coal seam is 30°, Compared with the reduction of coal pillar bearing capacity before roof cutting is 2164 KN; with the increase of the overburden rock caving angle, the reduction of the coal pillar bearing capacity before and after cutting the top increases continuously, the caving angle of overburden rock is 63°, Compared with the reduction of coal pillar bearing capacity before roof cutting is 2218 KN. ② After the implementation of roof cutting and cutting off the overhanging roof structure, the stress of the surrounding rock of the coal pillar gang in the roadway has significantly decreased by 18.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil and Ocean Engineering, Jiangsu Ocean University, Lian Yungang, 222005, China.
Roof water inrush in coal mining is a significant type of water-related disaster that usually results from the interconnection of water-bearing geological formations formed by cracks during and after work face mining. Therefore, monitoring roof water infiltration is of paramount importance in preventing or mitigating water inrush in the mine work face. This study employed the roof borehole electrical resistivity tomography method to conduct physical experiments for monitoring water seepage in roof cracks generated during coal model mining.
View Article and Find Full Text PDFSci Rep
January 2025
Fugu Energy Investment Group Shagoucha Mining Co., Ltd.,, Fugu, 719000, China.
The formation and development of plastic zone in the surrounding rock is the essence of large deformation damage to the surrounding rock in deep, highly stressed roadway. The -850 m roadway of the Qujiang mine is laid flat longitudinally under the 805 working face and coal pillar, and under the influence of the mining movement of the upper working face and the pre-stressing pressure of the coal pillar, the periphery of the roadway is no longer a pure non-uniform stress field, but a non-uniform stress field with both vertical and horizontal dynamic pressure. Based on the Hoek-Brown strength criterion, the unified strength theory is modified and the nonlinear unified strength theory of rock is established by comprehensively considering the intermediate principal stress, rock properties and rock structure.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mines, China University of Mining and Technology, No.1 Daxue Rd, Xuzhou, 221116, China.
Pillar stability has garnered significant attention owing to the effects of pillars on coal resource recovery rate, coal pillar stability, and coal bump risk. This study examined the roadway stability control principles of conventional and yield coal pillars. The conventional coal pillars were designed as load-bearing structures with a high load-bearing capacity to carry most of the abutment load, while yield coal pillars were designed as buffer structures for transferring rapidly increasing abutment loads to adjacent solid coal ribs by progressive deformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!