A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A new method to design energy-conserving surrogate models for the coupled, nonlinear responses of intervertebral discs. | LitMetric

The aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the scalar force-torque -potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of mechanical energy through their structure. At the same time, they were capable of predicting disc forces in a physiological range of motion and for the coupling of all six degrees of freedom of an intervertebral joint. The performance of all surrogate models for a subject-specific L4 5 disc geometry was evaluated both on training and test data obtained from uncoupled (one-dimensional), weakly coupled (two-dimensional), and random movement trajectories in the entire six-dimensional (6d) physiological displacement range, as well as on synthetic kinematic data. We observed highest precisions for the kernel surrogate followed by the fourth-order polynomial model. Both clearly outperformed the second-order polynomial model which is equivalent to the commonly used stiffness matrix in neuro-musculoskeletal simulations. Hence, the proposed model architectures have the potential to improve the accuracy and, therewith, validity of load predictions in neuro-musculoskeletal spine models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101520PMC
http://dx.doi.org/10.1007/s10237-023-01804-4DOI Listing

Publication Analysis

Top Keywords

surrogate models
16
polynomial model
8
models
7
surrogate
5
method design
4
design energy-conserving
4
energy-conserving surrogate
4
models coupled
4
coupled nonlinear
4
nonlinear responses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!