Therapeutic applications of gut microbes in cardiometabolic diseases: current state and perspectives.

Appl Microbiol Biotechnol

Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Sciences, Guangzhou, 510070, China.

Published: January 2024

Cardiometabolic disease (CMD) encompasses a range of diseases such as hypertension, atherosclerosis, heart failure, obesity, and type 2 diabetes. Recent findings about CMD's interaction with gut microbiota have broadened our understanding of how diet and nutrition drive microbes to influence CMD. However, the translation of basic research into the clinic has not been smooth, and dietary nutrition and probiotic supplementation have yet to show significant evidence of the therapeutic benefits of CMD. In addition, the published reviews do not suggest the core microbiota or metabolite classes that influence CMD, and systematically elucidate the causal relationship between host disease phenotypes-microbiome. The aim of this review is to highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as fecal microbiota transplantation and nanomedicine. KEY POINTS: • To highlight the complex interaction of the gut microbiota and their metabolites with CMD progression and to further centralize and conceptualize the mechanisms of action between microbial and host disease phenotypes. • We also discuss the potential of targeting modulations of gut microbes and metabolites as new targets for prevention and treatment of CMD, including the use of emerging technologies such as FMT and nanomedicine. • Our study provides insight into identification-specific microbiomes and metabolites involved in CMD, and microbial-host changes and physiological factors as disease phenotypes develop, which will help to map the microbiome individually and capture pathogenic mechanisms as a whole.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799778PMC
http://dx.doi.org/10.1007/s00253-024-13007-7DOI Listing

Publication Analysis

Top Keywords

gut microbes
12
interaction gut
12
gut microbiota
12
host disease
12
disease phenotypes
12
cmd
9
influence cmd
8
highlight complex
8
complex interaction
8
microbiota metabolites
8

Similar Publications

Digging deeper into necrotizing enterocolitis: bridging clinical, microbial, and molecular perspectives.

Gut Microbes

December 2025

Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China.

Necrotizing Enterocolitis (NEC) is a severe, life-threatening inflammatory condition of the gastrointestinal tract, especially affecting preterm infants. This review consolidates evidence from various biomedical disciplines to elucidate the complex pathogenesis of NEC, integrating insights from clinical, microbial, and molecular perspectives. It emphasizes the modulation of NEC-associated inflammatory pathways by probiotics and novel biologics, highlighting their therapeutic potential.

View Article and Find Full Text PDF

The gut microbiome plays a key role in human health, influencing various biological processes and disease outcomes. The historical roots of probiotics are traced back to Nobel Laureate Élie Metchnikoff, who linked the longevity of Bulgarian villagers to their consumption of sour milk fermented by Lactobacilli. His pioneering work led to the global recognition of probiotics as beneficial supplements, now a multibillion-dollar industry.

View Article and Find Full Text PDF

Metabolic tug-of-war: Microbial metabolism shapes colonization resistance against enteric pathogens.

Cell Chem Biol

January 2025

Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address:

A widely recognized benefit of gut microbiota is that it provides colonization resistance against enteric pathogens. The gut microbiota and their products can protect the host from invading microbes directly via microbe-pathogen interactions and indirectly by host-microbiota interactions, which regulate immune system function. In contrast, enteric pathogens have evolved mechanisms to utilize microbiota-derived metabolites to overcome colonization resistance and increase their pathogenic potential.

View Article and Find Full Text PDF

Rare earth elements (REEs) are essential for many clean energy technologies. Yet, they are a limited resource currently obtained through carbon-intensive mining. Here, bio-scaffolded proteins serve as simple, effective materials for the recovery of REEs.

View Article and Find Full Text PDF

Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate.

Europace

January 2025

Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!