Aim: Endodontic microsurgery (EMS) of maxillary molars may represent a complex challenge to the clinician due to the location of the roots and the proximity of the maxillary sinus floor. This report aimed to describe the simultaneous use of a computer-assisted dynamic navigation (C-ADN) system and piezoelectric bony-window osteotomy for the transantral microsurgical approach of a maxillary left first molar with adequate root canal filling and symptomatic apical periodontitis.
Summary: This case report highlights the importance of C-ADN to carry out a minimally invasive buccal surgical access to palatal roots affected by apical periodontitis and provides a practical example to help clinicians make treatment decisions based on the available evidence. Clinical and tomographic evaluations were performed before the surgical procedure and at 24-month follow-up. This case was treated using a C-ADN system fitted to a piezotome for the buccal approach of the buccal roots, maxillary sinus membrane lifting, and for transantral location, root-end resection, cavity preparation, and filling of the palatal root. The navigation system allowed to achieve an accurate apical canal terminus location and root-end filling of the three roots with a minimally invasive piezoelectric crypt approach. At the 24-month follow-up examination, the patient remains asymptomatic, with normal periapical structures, and regeneration of maxillary sinus walls. It was concluded that the combination of dynamic navigation with piezoelectric bony-window osteotomy offers enhanced accuracy, tissue preservation, diminished risk of iatrogenic complications, and could maximize success and survival rates in transantral EMS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/iej.14026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!