A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of Self-Wrinkling Polymer Films with Tunable Patterns through an Interfacial-Fuming-Induced Surface Instability Process. | LitMetric

Inspired by the superglue fuming method for fingerprint collection, this study developed a novel interfacial-fuming-induced surface instability process to generate wrinkled patterns on polymeric substrates. High-electronegativity groups are introduced on the substrate surface to initiate the polymerization of monomer vapors, such as ethyl cyanoacrylate, which results in the formation of a stiff poly(ethyl cyanoacrylate) capping layer. Moreover, interfacial polymerization resulted in the covalent bonding of the substrate, which led to the volumetric shrinkage of the composite and the accumulation of compressive strain. This process ultimately resulted in the development and stabilization of wrinkled surface morphologies. The authors systematically examined parameters such as the modulus of the epoxy substrate, prestrain, the flow rate of fuming, and operating temperature. The aforementioned technique can be easily applied to architectures with complex outer morphologies and inner surfaces, thereby enabling the construction of surface patterns under ambient conditions without vacuum limitations or precise process control. This study is the first to combine fuming-induced interfacial polymerization with surface instability to create robust wrinkles. The proposed method enables the fabrication of intricate microwrinkled patterns and has considerable potential for use in various practical applications, including microfluidics, optical components, bioinspired adhesive devices, and interfacial engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202311679DOI Listing

Publication Analysis

Top Keywords

surface instability
12
interfacial-fuming-induced surface
8
instability process
8
interfacial polymerization
8
surface
6
fabrication self-wrinkling
4
self-wrinkling polymer
4
polymer films
4
films tunable
4
patterns
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!